
User Manual
for

OASIS WITH OCL™
model version 3.10.8
 gui version 4.6.16

December 1, 2009

-2-

Contact Information:
http://www.HydroLogics.net

HydroLogics, Inc.

10440 Shaker Drive, Suite 104

Columbia, MD 21046

410-715-0555

HydroLogics, Inc.

811 Mordecai Drive, Suite 200

Raleigh, NC 27604

919-856-1288

HydroLogics, Inc.

Portland, OR

503-715-9959

Intellectual Property Notice

OASIS with OCL is copyright © 2009 by HydroLogics, Inc.

The Operations Control Language (OCL) is protected by U.S. Patent numbers 6,002,863 and 6,581,027

OASIS makes use of software from the following third parties:

VEDIT is copyright © 1990-2008 by Greenview Data, Inc. (http://www.vedit.com)

XA is copyright © 1993-2008 by Sunset Software Technology. (http://www.sunsetsoft.com)

Microsoft, MS, Microsoft Access, Microsoft Excel, Microsoft FoxPro, MS-DOS, Microsoft Windows, Windows 95,

Windows 98, and Windows XP are registered trademarks of Microsoft Corporation.

Charting Tools for Windows and Real-Time Graphics Tools for Windows are copyright © 1994-2008 by Quinn-Curtis Inc.

(http://www.quinn-curtis.com).

MetaDraw is copyright © 1995-2008 by Bennet-Tec Information Systems, Inc.

(http://www.Bennet-Tec.com).

True DBGrid is a registered trademark of ComponentOne LLC. Copyright © 1995-2008 ComponentOne LLC

(http://www.ComponentOne.com).

-3-

TABLE OF CONTENTS

CHAPTER 1

INTRODUCTION

. -13-

1.0.0 ORGANIZATION OF THIS MANUAL. -13-

1.1.0 OASIS WITH OCL™. -13-

1.1.1 LINEAR PROGRAM ROUTING. -13-

1.1.2 OCL. -14-

1.1.3 THE ADVANTAGES OF OASIS. -14-

CHAPTER 2

USER GUIDE. -16-

2.0.0 INTRODUCTION. -16-

2.1.0 REPRESENTATION OF THE PHYSICAL SYSTEM.. -16-

2.1.1 NODES.. -17-
A. JUNCTION NODES. -17-

B. RESERVOIR NODES. -18-

C. DEMAND NODES. -18-

2.1.2 ARCS. -18-

2.1.3 INFLOW.. -19-

2.1.4 TERMINAL NODES. -19-

2.2.0 DECIDING HOW WATER IS ROUTED. -20-

2.2.1 DECISION VARIABLES. -20-

2.2.2 OPERATING CONSTRAINTS. -21-

2.2.3 OPERATING GOALS AND WEIGHTS. -21-

2.2.4 CONTINUITY-OF-FLOW CONSTRAINTS.. -23-

2.2.5 ALTERNATE OPTIMA.. -24-

2.2.6 PRIORITY LEVELS. -25-

2.2.7 MULTIPLE-PERIOD OPTIMIZATION (MPO). -26-

2.3.0 MODEL INPUT. -29-

2.3.1 RUN DIRECTORY. -29-

2.3.2 FILES THAT OASIS READS. -30-

2.4.0 STANDARD OPERATING RULES.. -31-
A. MAXIMUM FLOW IN AN ARC. -31-

B. MINIMUM (TARGET) FLOW IN AN ARC. -31-

C. MAXIMUM REVERSE FLOW IN AN ARC. -32-

D. DEMAND AND DELIVERY. -33-

E. INFLOW. -34-

F. RESERVOIR ELEVATION AND SURFACE AREA. -34-

G. RESERVOIR EVAPORATION. -35-

H. RESERVOIR OPERATIONAL ZONES OR RULE CURVES. -36-

-4-

2.5.0 OPERATIONS CONTROL LANGUAGE (OCL). -38-

2.5.1 USING OCL SIMULATION COMMANDS. -39-
A. Udef command. -39-

B. Segment command. -40-

C. Set command. -40-

D. Constraint command. -41-

E. Target command. -42-

F. Minimax command. -43-

G. Solve command. -43-

H. Cancel command. -44-

I. Run_module command. -45-

2.5.2 RETURN FLOW FROM A DEMAND NODE. -45-

2.6.0 OUTPUT. -46-

2.7.0 POST-PROCESSING. -47-

2.8.0 TIME IN THE SIMULATION. -47-

2.8.1 TIME STEPS AND THE TIME CYCLE. -47-

2.8.2 START AND END. -49-

2.8.3 CONTINUATION MODE. -49-

2.8.4 LEAP YEAR. -50-

2.8.5 YEAR SCHEME. -50-

2.9.0 UNITS OF MEASUREMENT.. -52-

2.10.0 WATER QUALITY. -54-

2.10.1 WATER QUALITY BOUNDARY CONDITIONS. -55-

2.10.2 WATER QUALITY AT RESERVOIR NODES. -56-

2.10.3 WATER QUALITY OUTPUT. -57-

CHAPTER 3

REFERENCE: GRAPHICAL USER INTERFACE.. -58-

3.0.0 INTRODUCTION. -58-

3.1.0 INSTALLATION. -58-

3.1.1 UNINSTALLATION. -59-

3.1.2 COMPONENTS OF THE INSTALLATION PACKAGE. -60-

3.2.0 VEDIT. -60-

3.3.0 FILES AND DIRECTORY STRUCTURE. -61-

3.3.1 STANDARD DIRECTORY STRUCTURE. -61-

3.3.2 HOME FOLDER. -62-

3.3.3 EXECUTABLES FOLDER. -63-

3.3.4 POINTER FILE Directry.nam. -64-

3.3.5 CONFIGURATION FILE GUI.ini. -65-

3.3.6 DETERMINING FILE VERSION. -68-

3.3.7 FILES IN THE RUN DIRECTORY.. -69-

3.3.8 SUBGROUPS.. -70-

-5-

3.4.0 HANDLING RUN DIRECTORIES. -72-

3.4.1 OPEN RUN. -72-

3.4.2 CREATING A NEW RUN. -72-

3.4.3 DELETING A RUN. -72-

3.4.4 CHANGING THE NAME OF A RUN.. -73-

3.4.5 NOTES FILE. -73-

3.4.6 SAVING THE RUN. -73-

3.4.7 SIMULATION MODE AND POSITION-ANALYSIS MODE. -74-

3.4.8 RUNNING THE MODEL. -75-

3.4.9 LOCKING RUNS.. -75-

3.5.0 VIEWING OUTPUT. -75-

3.6.0 MENU INTERFACE DETAILS. -76-

3.6.1 File MENU.. -76-

3.6.2 Edit MENU.. -81-

3.6.3 Run MENU.. -86-

3.6.4 Output MENU. -87-

3.6.5 Help MENU. -94-

3.7.0 MAIN-WINDOW INTERFACE DETAILS.. -96-

3.7.1 Schematic TAB.. -96-
A. SCHEMATIC BUTTONS. -96-

B. NODE AND ARC CATEGORIES AND THE KEYBAR CONTROL. -98-

C. SPECIFIC SCHEMATIC TASKS. -99-

3.7.2 Setup TAB. -103-
A. TIME RANGE OF RUN. -103-

B. CONTROL BUTTONS. -103-

C. OCL FILES. -103-

D. INITIAL CONDITIONS. -103-

E. GAMING PARAMETERS. -104-

F. CUSTOM FEATURES. -105-

3.7.3 Time TAB. -105-
A. SIMULATION TIME RANGE. -105-

B. TIME STEPS. -105-

C. POSITION ANALYSIS. -106-

3.7.4 Node TAB.. -107-

3.7.5 Arc TAB. -108-

3.7.6 OCL TAB. -108-

3.7.7 Misc TAB. -109-

3.8.0 SPECIAL DIALOG BOXES. -110-

3.8.1 Node Settings Dialog Box.. -110-

3.8.2 Arc Settings Dialog Box. -113-

3.8.3 Pattern Dialog Box. -115-

3.8.4 Reservoir Storage-Area-Elevation Dialog Box. -118-

3.8.5 OCL Lookup Dialog Box. -119-

3.9.0 STATUS BAR. -121-

-6-

CHAPTER 4

REFERENCE: MODEL INPUT. -122-

4.1.0 COMMAND LINE. -122-

4.2.0 IDENTITY KEY.. -124-

4.3.0 POINTER FILE. -124-

4.4.0 CONTROL FILE. -125-

4.5.0 STATIC DATABASES. -128-

4.5.1 CONVENTIONS FOR TIME-PATTERN TABLES. -130-
A. General. -130-

B. Leap day in pattern input. -132-

C. Redistributing volume input to volume per time step. -132-

D. Redistributing flow-rate input to volume per time step. -133-

E. Redistributing volume input to volume. -134-

F. Redistributing concentration input. -135-

G. Time-series input. -135-

4.5.2 TIME-PARAMETERS DATABASE FILE. -136-
A. Table Range. -136-

B. Table Run. -137-

C. Table Year scheme. -137-

D. Table Steps. -138-

E. Table DSS Steps. -141-

F. Table PosAnalysis. -142-

G. Table Runtime. -143-

4.5.3 SYSTEM DATABASE FILE. -144-
A. Table Units . -144-

B. Table Node.. -146-

C. Table Arc. -149-

D. Table Concentration. -152-

E. Table Minimum Flow. -153-

F. Table Maximum Flow.. -154-

G. Table Maximum Reverse Flow. -155-

H. Table Reservoir. -156-

I. Table Reservoir Rules . -158-

J. Table Reservoir S-A-E . -159-

K. Table Evaporation. -160-

L. Table Evaporation Pattern.. -161-

M. Table File ID.. -162-

N. Table Balance Sheet Columns. -163-

O. Table Balance Sheet Rows.. -164-

P. Table Declare Timeseries.. -166-

4.5.4 DEMAND DATABASE FILE. -168-
A. Table Demand. -168-

B. Table Demand Pattern.. -169-

C. Table File ID. -170-

4.5.5 INFLOW DATABASE FILE. -171-
A. Table Inflow Pattern. -171-

B. Tables C1 Pattern, C2 Pattern, etc.. -172-

C. Table File ID. -173-

4.5.6 INITIAL CONDITIONS DATABASE FILE. -174-
A. Table Initial Condition. -174-

-7-

4.5.7 WEIGHTS DATABASE FILE. -175-
A. Table Weight: Arc. -175-

B. Table Weight: Storage. -176-

C. Table Weight: Demand . -177-

4.5.8 OCL STATIC DATABASE FILE. -178-
A. Table Lookup. -178-

B. Table Pattern. -179-

4.5.9 STATIC DATABASE TABLES USED BY THE OASIS GUI. -181-
C. Table Constants. -181-

D. Table zzGUI_Status. -181-

E. Table zzGUI_Page. -182-

F. Table zzGUI_NodeType. -182-

G. Table zzGUI_ArcType. -183-

H. Table zzGUI_InflowType. -183-

I. Table zzGUI_Text. -184-

J. Table zzGUI_Shape. -185-

K. Table zzGUI_Link. -187-

L. Table zzGUI_Image. -188-

M. Table zzGUI_ZOrder. -189-

4.6.0 TIME-SERIES DATABASES. -190-

4.6.1 CONVENTIONS IN TIME-SERIES DATABASES. -190-

4.6.2 SYSTEM TIME-SERIES FILE. -192-
A. Time-series minimum flow. -192-

B. Time-series maximum flow. -192-

C. Time-series maximum reverse flow. -193-

D. Time-series reservoir evaporation rate.. -193-

E. Time-series reservoir upper-rule curve. -193-

F. Time-series reservoir lower-rule curve. -194-

4.6.3 DEMAND TIME-SERIES FILE. -194-
A. Time-series demand. -194-

4.6.4 INFLOW TIME-SERIES FILE. -195-
A. Time-series inflow. -195-

B. Time-series concentration input at a node. -195-

C. Time-series concentration input at an arc.. -196-

4.6.5 OCL TIME-SERIES FILE. -196-
A. OCL time-series input. -196-

-8-

4.7.0 OPERATIONS CONTROL LANGUAGE (OCL). -197-
A. General OCL syntax. -197-

B. Quotation marks. -198-

C. Square brackets and substitute names. -198-

D. Comment markers. -198-

E. Simulation commands. -199-

F. Meta commands. -199-

G. Sections of the OCL file. -200-

4.7.1 SYNTAX OF OCL META COMMANDS.. -200-
A. :UDEF:. -200-

B. :COMMANDS:. -200-

C. :END:. -200-

D. :ITERATE:. -200-

E. :STATDB:. -201-

F. :TIMEDB:. -201-

G. :MODULE:. -201-

H. :INCLUDE:. -201-

I. :SUBSTITUTE:. -202-

J. :FOR: :NEXT:. -203-

K. :IF: :ELSEIF: :ELSE: :ENDIF:.. -204-

4.7.2 SYNTAX OF OCL SIMULATION COMMANDS. -206-
A. Conditions. -206-

B. Udef Command. -208-

C. Segment Command. -210-

D. Constraint Command.. -211-

E. Target Command. -212-

F. Set Command. -216-

G. Run_module Command. -218-

H. Minimax Command. -220-

I. Solve Command.. -222-

J. Cancel Command. -225-

4.7.3 SYNTAX OF OCL EXPRESSIONS. -227-

4.7.4 SYNTAX OF OCL NON-DECISION VARIABLES.. -228-
A. Time lags and time indices on non-decision variables. -228-

B. Abs_period variable. -229-

C. Ann_demand variable. -229-

D. Concentration variable. -229-

E. Conc_input variable at a node. -229-

F. Conc_input variable at an arc. -229-

G. Cycle_step variable. -229-

H. Day variable.. -230-

I. Dead_stor variable. -230-

J. Demand variable. -230-

K. Delivery variable. -230-

L. Elevation variable. -230-

M. Evap variable. -230-

N. Evap_rate variable.. -230-

O. Flow variable. -231-

P. Inflow variable. -231-

Q. Julian variable. -231-

R. Length variable. -231-

S. Lower_rule variable. -231-

T. Max_flow variable. -231-

U. Max_stor variable. -231-

V. MaxRev_flow variable. -232-

-9-

W. Min_flow variable. -232-

X. Minute variable. -232-

Y. Month variable. -232-

Z. MPO_step variable.. -232-

AA. Num_MPO_steps variable. -232-

BB. Pattern variable. -232-

CC. Period variable. -233-

DD. Prep variable.. -233-

EE. Shortage variable. -233-

FF. Storage variable. -233-

GG. Table variable. -233-

HH. Target_val variable. -233-

II. Timesers variable. -234-

JJ. Upper_rule variable. -234-

KK. Year variable. -234-

LL. Udef variable. -234-

4.7.5 SYNTAX OF OCL DECISION VARIABLES.. -235-
A. Time lags on decision variables. -235-

B. dDelivery variable. -236-

C. dFlow variable. -236-

D. Flow-split variables. -236-

E. dStorage variable. -236-

F. Storage zone variables. -236-

G. Udef decision variables. -237-

4.7.6 SYNTAX OF OCL FUNCTIONS. -238-
A. Abs_val function. -238-

B. Accumulate function. -238-

C. Convert_units function.. -238-

D. Date_to_Jul function. -239-

E. Elev_to_stor function. -239-

F. Exp function. -239-

G. Floor function. -239-

H. Is_Leap_Year function.. -239-

I. Jul_to_Day function. -239-

J. Jul_to_Month function. -240-

K. Log10 function.. -240-

L. LogN function.. -240-

M. Lookup function. -240-

N. Max function. -240-

O. Min function. -240-

P. Remainder function. -240-

Q. RevLookup function. -240-

R. Round function.. -241-

S. Stor_to_area function.. -241-

T. Stor_to_elev function. -241-

U. TimeAccum function. -241-

V. TimeOffset function. -243-

W. Weekday function. -245-

4.7.7 EXTERNAL MODULES. -246-
A. General steps of the external module protocol.. -246-

B. Dynamic Link Library (DLL). -247-

C. Parent module. -248-

-10-

CHAPTER 5

REFERENCE: MODEL OUTPUT. -249-

5.0.0 INTRODUCTION. -249-

5.1.0 DEBUG OUTPUT. -249-

5.2.0 BALANCE SHEET OUTPUT.. -250-

5.3.0 OCL OUTPUT. -251-

5.3.1 SUMMARY OF OCL INPUT. -251-

5.3.2 OCL EXPRESSION RESULTS. -251-

5.3.3 REPORT OF TARGET AND MINIMAX RESULTS. -253-

5.4.0 WEIGHT OUTPUT. -253-

5.5.0 LP OUTPUT. -253-

5.5.1 STATEMENT OF THE LP. -254-

5.5.2 LP SOLUTION REPORT. -255-

5.6.0 TIME-SERIES OUTPUT. -256-

CHAPTER 6

REFERENCE: POST-PROCESSOR PROGRAMS.. -258-

6.0.0 INTRODUCTION. -258-

6.1.0 ONEVAR PROGRAM.. -258-

6.1.1 ONEVAR COMPUTATIONS. -259-

6.1.2 ONEVAR POINTER FILE. -260-

6.1.3 ONEVAR INPUT FILE. -260-

6.1.4 FORMATS OF THE ONEVAR OUTPUT FILE. -262-
A. TABLE format type. -262-

B. COLUMN format type. -264-

C. SEQUENTIAL format type.. -266-

D. REPORT format type. -268-

6.1.5 HEC-DSS OUTPUT FROM ONEVAR. -271-

6.1.6 USING ONEVAR AS A PRE-PROCESSOR. -271-

6.1.7 FIELDS OF THE ONEVAR INPUT-FILE HEADER SECTION. -273-
A. :FILE: field. -273-

B. :FILEDSS: field. -273-

C. :FILEIHB: field. -273-

D. :STATDB: field. -274-

E. :TIMEDB: field. -274-

F. :FORMAT: field. -274-

G. :SORT: field.. -274-

H. :DELIMITER: field. -275-

I. :STEP: field.. -275-

J. :TIME: field. -276-

K. :GROUPING: field. -276-

L. :SUMMARY: field. -276-

M. :PAGELENGTH: field. -277-

N. :FileAppend: field. -277-

O. :NOLABELS: field. -277-

P. :NOBLANK: field. -278-

Q. :NOYEAR: field. -278-

R. :DATESLASH: field. -278-

S. :DATETITLE: field. -278-

-11-

T. :DateChangeStart: field.. -279-

U. :PREPDB: field. -279-

V. :TimeEndOfStep: field. -279-

6.1.8 META-KEYWORDS FOR DEMARCATING THE ONEVAR FILE. -280-
A. :TABLES: meta-command. -280-

B. :END: meta-command. -280-

C. :NEWFILE: meta-command. -280-

D. :TRACEFILTER: meta-command. -280-

E. :BLOCK: meta-command.. -281-

F. :COLUMN: meta-command. -281-

G. :TIMESHIFT: meta-command. -281-

6.1.9 ONEVAR OUTPUT COMMANDS.. -282-
A. Title definition. -282-

B. Blank definition. -283-

C. Table definition. -284-

D. Summary options with the Table definition. -288-

E. StepFilter command. -291-

6.1.10 TRACE-FILTER SECTION IN THE ONEVAR INPUT FILE. -292-

6.2.0 PLOT PROGRAM. -294-

6.2.1 PLOT POINTER FILE. -296-

6.2.2 ONEVAR INPUT FILE. -297-

6.2.3 PLOT-DEFINITION FILE. -299-
A. Table File ID. -299-

B. Table Lines. -300-

D. Table Axes. -303-

E. Table Labels. -305-

F. Table Grid. -307-

G. Quinn-Curtis color choices. -308-

H. Line-style choices. -309-

I. Font choices. -309-

J. Text-style choices. -309-

6.2.4 PLOT-WINDOW INTERFACE.. -309-

CHAPTER 7

REFERENCE: LINEAR PROGRAM. -312-

7.0.0 INTRODUCTION. -312-

7.1.0 DEFINITIONS. -312-

7.2.0 DECISION VARIABLES. -313-

7.3.0 CONSTRAINTS. -321-
A. Objective function and priority objectives. -321-

B. Continuity constraint. -322-

C. Flow-splitting constraint. -322-

D. Storage-splitting constraint. -323-

E. Target-command constraint. -323-

F. Constraint-command constraint. -323-

G. Segment-command constraints.. -324-

H. Minimax-command constraints. -325-

7.4.0 MULTIPLE-PERIOD OPTIMIZATION (MPO). -325-

-12-

CHAPTER 8

REFERENCE: BATCH PROGRAM.. -326-

8.0.0 BATCH PROGRAM. -326-

8.1.0 BATCH FILE. -326-

CHAPTER 9

REFERENCE: POSITION-ANALYSIS PROGRAM. -328-

9.0.0 POSITION ANALYSIS WITH OASIS.. -328-

9.1.0 SOURCE OF TIME-VARYING DATA FOR POSITION ANALYSIS.. -328-

9.2.0 INPUT FOR THE POSITION ANALYSIS PROGRAM. -329-

9.2.1 RUN DIRECTORY. -330-

9.2.2 CONTROL FILE. -330-

9.2.3 TIME-PARAMETERS DATABASE. -331-

9.2.4 INITIAL CONDITIONS.. -331-

9.3.0 OUTPUT OF THE POSITION ANALYSIS. -331-

9.4.0 POST-PROCESSING THE POSITION ANALYSIS. -332-

9.4.1 ONEVAR WITH POSITION ANALYSIS. -332-

9.4.2 PLOT WITH POSITION ANALYSIS. -333-

9.4.3 USING A TRACE FILTER. -333-

GLOSSARY. -334-

-13-

CHAPTER 1
INTRODUCTION

1.0.0 ORGANIZATION OF THIS MANUAL

OASIS is a very powerful program, and there is a lot that you can learn about it. It is very unlikely that you will need to use

all of OASIS’s features. We intend that you will use the reference chapters selectively, looking up information only as you

need it. The text contains extensive cross-references, telling you where you can look up supporting information if you need it.

Before you begin using OASIS, we recommend you review the ideas presented in Chapter 2. Chapter 2 should also be your

starting point when you want to look up an OASIS feature. It introduces all the main ideas in OASIS, without going into all

of the details.

Chapters 3 and after are reference chapters. They give all of the details about the various OASIS features without necessarily

presenting the ideas behind the features. You should not need to look in the reference chapters until you have a specific

problem to look up.

1.1.0 OASIS WITH OCL™

OASIS with OCL™ is a generalized program for modeling the operations of water resources systems. OASIS simulates the

routing of water through a system represented by nodes and arcs. The routing may account for both human control and

physical constraints on the system.

We cannot emphasize enough that OASIS is a generalized program. It is not a model of California’s State Water Project

system, New York City’s watershed, or the canals of South Florida. Rather, it is a program that allows you to model all of

these and virtually any other system in the world. We often refer to OASIS as being completely data-driven. That is to say

that you specify the features and operating rules of your system through OASIS’s input data, not by altering OASIS’s source

code.

1.1.1 LINEAR PROGRAM ROUTING

One of OASIS’ most powerful, innovative features is that it simulates the routing of water by solving a linear program.

What this means for you, the user, is that all operating rules are expressed as operating goals or operating constraints. What

this does not mean is that you must be trained in linear programming in order to use OASIS. To model a system, you simply

need to approach the problem as a set of goals and constraints. Let us be clear about these terms:

 A constraint is a rule that OASIS must obey.

 A goal is a rule that OASIS tries to meet. By their nature, goals are in competition with other goals, so typically all

goals cannot be satisfied. You specify which goals take precedence over others by giving them relative weights.

Think of this as ranking the goals.

With these goals and constraints, you tell OASIS what to do. For the most part, you do not have to tell it how to do it,

because the linear-program solver does that for you.

Some modelers in the water resources field have used linear programming to optimize the operation of a system over a period

of record with a single optimization. OASIS works very differently. OASIS simulates a period of record by optimizing the

operations for a single time step, then going on to the next time step. Thus a 60-year record with a monthly time step would

result in 720 separate optimizations. In the other modeling approach, the model has “perfect future knowledge,” where the

inflows and demands are known for the entire record at the start of the run. This allows the system to respond, for example, to

a flood a year before it occurs. OASIS’s running from time step to time step is much more realistic since it’s more like how

the operators, who are not blessed with perfect future knowledge, control the system.

-14-

(OASIS now has the ability to optimize more than one time step at a time. However, this is considered an advanced feature

that is beyond the interest of most users.)

1.1.2 OCL

OCL is short for operations control language, and it gives tremendous power to you, the modeler. The role of OCL is similar

to that of a “scripting language” or “macro language” in other kinds of computer programs. Let us be clear that OCL is not

the source code for OASIS. Rather, it is a form of input to OASIS, in which you enter special operating rules. You write

rules in OCL using various simulation commands. The source code of the model never has to be modified or recompiled.

This introduction will have more to say about OCL below.

1.1.3 THE ADVANTAGES OF OASIS

OASIS has evolved from HydroLogics' work modeling water resources systems all over the United States and elsewhere.

That experience has guided us to develop OASIS with the following criteria:

 FLEXIBILITY

HydroLogics has found that building effective computer models of water resources systems can be a time-consuming,

expensive job. After a new model is built, modifications often must be made to the source code in order to study the

alternatives. Often, the alternatives may be very complicated. In order to build new models and modify existing ones, OASIS

has been designed to be very flexible. For example, you decide how many nodes and arcs are in the system, and how they

connect. Also, your input data can come from different sources, such as time-series databases or time patterns (whose values

cycle every year), or the values can be computed with OCL.

Flexibility is the strength of OCL. In the modeling programs of yesterday, a model would follow certain rules of pre-specified

form, and you would only supply certain parameter values for these rules. Although you can still do this with OASIS, OCL

frees the modeler from the limitations of pre-specified rule forms. Because it is extremely difficult to foresee every type of

rule that you might want to model, OCL allows you to write new rules where you can design the form of the rule, as well as

the parameter values. OCL also allows you to add conditional (“if-then”-type) logic to your rules.

 STANDARDIZED FEATURES

Standardized features are the complement to flexibility. After all, there is nothing more flexible than starting from scratch and

writing your own program in FORTRAN or another programming language, but such flexibility comes at a steep price.

OASIS is designed specifically to model the operations of water resources systems, and it relies on many standardized

features that are appropriate to that kind of modeling. For example, OASIS knows how to compute evaporation from a

reservoir. It knows how to handle flow capacities and minimum flow targets. It automatically ensures that the continuity of

flow is not violated. Furthermore – and very importantly – model input and output are handled entirely by OASIS. These

standardized features are not limiting to OASIS because the OCL allows you to go beyond these forms whenever you need to.

However, the job is made easier because the most common tasks are already handled.

 INTUITIVE, REALISTIC FORMS FOR OPERATING RULES

Because OASIS simulates routing decisions through linear programming, all simulation rules are represented as either goals

or constraints. The fact that rules can be modeled as goals is particularly important (and novel), because goal-seeking

behavior is an efficient modeling approach which corresponds very well to the way real world operators and planners think of

a water resources system. For example, reservoir storage targets, in-stream flow requirements, and off-stream deliveries are

typical goals for a water resources system. Furthermore, these goals are often in competition with each other. The goal-

seeking behavior of OASIS handles these rules very elegantly. With other modeling approaches, these competing goals

would have to be modeled with a complex set of “if-then” type rules. OASIS’s approach greatly cuts down on the “if-then”

rules.

Furthermore, the rules that you write in OCL usually look just like the rules that planners, operators, and policy-makers use.

-15-

For example, an agreement between water users might say that the diversion at point A plus the diversion at point B must be

less than 70% of the flow at point C. In OCL, you would write a constraint which is instantly recognizable as the

mathematical form of that statement.

 INTEGRATION WITH OTHER M ODELS

OCL allows you to send and receive data between OASIS and other programs, while the programs are running. We can thus

say that OASIS and the other programs are running in parallel. To OASIS, the other programs are “external modules.”

These external modules can be created from scratch, or existing programs can be fitted to communicate with OASIS. This

creates virtually unlimited possibilities for modeling water resources systems. Some tasks that are perfect for external

modules are groundwater flow and contaminant transport, biology or ecology, rainfall runoff, snow pack, variable demand,

agricultural return flow, river temperature, lake stratification, and tidal mixing. The list goes on.

Because all modules are running in parallel, they can react to each other. For example, OASIS could pass the flows that it

has just computed to a water quality model. The water quality model would then compute water quality data using the flow

data that it received from OASIS. The water quality data are passed back to OASIS, and using OCL, OASIS would then set

flow targets contingent upon the data it obtained from the water quality model.

External modules might share input and output databases, or they might use their own input and output. To OASIS, it does

not matter what computer language is used for the source code of the external modules. Also, the modular nature of this

approach allows different specialists to develop and maintain each module.

 DATABASE STORAGE

OASIS input and output are stored in databases: static data is kept in Microsoft Access and time-series data is kept in HEC-

DSS databases. (DSS was developed specifically for hydrologic time series data.) Unlike ASCII files, which often have

quirky formatting rules, database files are always labeled and properly formatted. Databases also provide an effective storage

system through which modules can share input data, and are perfect for interaction with an OASIS graphical user interface

(GUI).

OASIS stores all model output to a database, so there are no secrets in the operation. While you may interact with the

databases directly, you never need to. Instead, you use post-processor programs to report output in exactly the form you need.

There is one post-processor program for generating text tables and one for graphical plots. The post-processing is fully

configurable — you specify what output to display (and it may be the result of complex formulas), and how to format it.

 GRAPHICAL USER INTERFACE

The OASIS graphical user interface, or GUI, is the user-friendly computer program that you use to control OASIS. Some of

the GUI's most significant features are:

 Controls for entering data into the database tables

 Graphical schematic control in which you build your system by drawing it

 Organized management of simulation runs

 Easy access to output files, including post-processor output

For maximum flexibility, the OASIS simulation program and post-processor programs can stand alone – they can be used

without the GUI. However, most users will find that the GUI makes it easier and faster to use OASIS.

-16-

Figure 2.1.0

Example Schematic

CHAPTER 2
USER GUIDE

2.0.0 INTRODUCTION

This chapter is your comprehensive guide to using OASIS. It covers the concepts involved in modeling with OASIS. This

chapter is not a reference for input and output, but it does contain detailed references to sections in the reference chapters 3

through 9.

2.1.0 REPRESENTATION OF THE PHYSICAL SYSTEM

Before any model input can be created, you must plan a system schematic. The schematic is composed of the generalized

building-blocks of the system: nodes and arcs. A diagram of the schematic shows how the nodes and arcs fit together to form

the system. Figure 2.1.0 is an example schematic diagram.

The schematic clearly shows what is in the system, and by implication, what is not. As the modeler, you must decide what

needs to be included in the system and what should be excluded. You cannot model everything, and you should generally

only try to model what you need to. Within the system, water is neither created or destroyed. However, it can enter and leave

-17-

the system.

With OASIS, the schematic is always user-defined and modular. You build the schematic out of nodes and arcs. You may

add new nodes or arcs, remove any nodes or arcs, or modify the descriptive information associated with a node or arc. All

this information is recorded in OASIS's input files. The OASIS GUI contains controls that make if easy to build and modify

the schematic graphically (section 3.7.1)

In the sections that follow, we will discuss the following components of the schematic:

 Nodes — points of interest in the system.

 Arcs — which convey water from one node to another.

 Inflows — the water that enters a node from outside the system (or leaves a node to go outside the system), not

subject to the LP router’s control.

 Terminal nodes — at which water can leave the system, subject to the LP router’s control.

2.1.1 NODES

A node represents a point of interest in the system. The complement of the node is the arc. Arcs represent conveyance from

one node to another. In OASIS, every node must have at least one arc connecting to it.

Nodes are basic building blocks of an OASIS model. You specify how many nodes there are, and the descriptive information

about each, by editing OASIS input.

To add a new node to the system, add a record for the node to the Node table (section 4.5.3 part B). There will have to be
at least one arc connecting to this node in the Arc table (section 4.5.3 part C). Depending upon the node type, you may need
to add information to other database tables and OCL.

To remove a node from the system, delete the record for the node from the Node table in the system database (section
4.5.3 part B). Any reference to this node needs to be deleted from all other OASIS input.

Any node can have inflow . If it has positive value, inflow is water entering the node from outside the system. If it has

negative value, it is water leaving the system from the node, and it may be referred to as outflow. See section 2.1.3 and

section 2.4.0 part E for more about inflow.

Every node is identified by a unique node number, and every node has one of three node types: junction, demand, or

reservoir. The node type of every node is given in the Node table.

A. JUNCTION NODES

Junction nodes are the simplest type of nodes. Unlike demand or reservoir nodes, junction nodes are not automatically

associated with any special operating rules. Therefore, there are no special input tables for junction nodes. Junction nodes

are shown in Figure 2.1.0 as circles.

Some of the reasons to use a junction node are:

 To model a point in the system where inflow (or outflow) occurs.

 To model a point where there is a water-quality boundary condition.

 To model a point where conveyance features (represented by arcs) meet.

-18-

B. RESERVOIR NODES

Reservoir nodes are nodes at which water can be stored. OASIS computes the storage at the end of every time step, which is

the storage at the beginning of the next time step. Maintaining storage at a reservoir node is a basic, built-in operating goal.

OASIS has built-in features to model many types of rules associated with a reservoir node, including:

 Evaporation (section 2.4.0 part G).

 Rule curves or storage targets (section 2.4.0 part H).

 Storage-Area-Elevation relationships (section 2.4.0 part F).

Input needed for a reservoir node: For every reservoir node in the system, there must be a record in the Reservoir table
(section 4.5.3 part H) and the Initial Conditions table (section 4.5.6). Though not strictly required, you may also need
information in the Reservoir S-A-E table (section 4.5.3 part J), the Evaporation table (section 4.5.3 part K), and the Weight:
Storage table (section 4.5.7 part B). Note that the Reservoir table and Evaporation table may refer to additional static, time-
series, or OCL input.

Reservoir nodes are shown in Figure 2.1.0 as triangles.

Reservoir nodes would be used to model any storage point in the system, including natural or man-made lakes or ponds,

groundwater basins, or tanks.

C. DEMAND NODES

Demand nodes are nodes to which water is delivered. Delivery to a demand node is a basic, built-in operating goal (section

2.4.0 part D). The delivery may meet, but never exceed, a specified target value referred to simply as the demand. The

deficit between delivery and demand is called shortage.

It is assumed that water delivered to a demand node leaves the system. Consistent with this assumption, it is assumed that

there are no arcs leaving a demand node. However, you are permitted to create arcs that leave a demand node. The water

that flows through these arcs back into the system is called return flow , and it does not have to be equal to the delivery. See

section 2.5.2 for more information about return flow.

Input needed for a demand node: For every demand node in the system, there must be a record in the Demand table
(section 4.5.4 part A). Though it is not strictly required, you should also enter a record in the Weight: Demand table (section
4.5.7 part C). Note that the Demand table may refer to additional static, time-series, or OCL input.

Demand nodes are shown in Figure 2.1.0 as rectangles.

2.1.2 ARCS

An arc represents a conveyance feature in the system. The complement of the arc is the node. Nodes represent points where

conveyance features may join. In OASIS, every arc starts at one node (the upstream node) and ends at another node (the

downstream node). Any node may have more than one arc entering and more than one arc leaving.

Arcs are basic building blocks of an OASIS model. You specify how many arcs there are, and the descriptive information

about each, by editing OASIS input.

To add a new arc to the system, add a record for the arc to the Arc table (section 4.5.3 part C). The arc is identified by its
upstream and downstream nodes. There must be records for both nodes in the Node table (section 4.5.3 part B).

-19-

To remove an arc from the system, delete the record for the arc from the Arc table in the system database (section 4.5.3
part C). Any reference to this arc needs to be deleted from all other OASIS input.

The LP router decides the flow in an arc. Encouraging flow in an arc is a basic, built-in operating goal. Every arc is

directional. That is, the flow is positive when water goes from the upstream to the downstream node. The flow is negative

when it goes from the downstream to the upstream node. This is called reverse flow . The default assumption for an arc is

that there can be no reverse flow -- flow cannot be less than zero. However; you may enable reverse flow by specifying a

maximum reverse flow for the arc. See section 2.4.0 part C for more information.

For each arc, you have the options of specifying three operating criteria:

 minimum (target) flow (section 2.4.0 part B): a value of flow which the LP router tries to meet. There is no default

minimum (target) flow in an arc— you must specify if there is one.

 maximum flow (section 2.4.0 part A): an upper bound on the flow in the arc. The default is that there is no

maximum flow in an arc— you must specify if there is one.

 maximum reverse flow (section 2.4.0 part C): a lower bound on the flow in the arc. The default is that the lower

bound on flow is zero— you must specify if the lower bound is anything different.

Arcs are represented in Figure 2.1.0 by arrows that connect nodes.

2.1.3 INFLOW

Inflow is water entering the system at a node, not subject to control by the LP router. If the value of the inflow is negative,

then the water is actually leaving the system from a node, not subject to control by the LP router. This negative inflow could

be called outflow, but in OASIS the term inflow is used to mean both positive and negative inflows. At any node, the inflow

could be positive at some time steps and negative at others.

There can be no more than one inflow value given for each node.

The inflow is not controlled by the LP router, but is computed before the routing problem is solved. The value of inflow is

thus incorporated into the continuity-of-flow constraint (section 2.2.4) at any node that has inflow. See section 2.2.0 for

discussion of the LP router. The inflow values can be given in a database, or computed in OCL.

To apply inflow at a node: Edit the Inflow field for the node in the Node table (section 4.5.3 part B). The entry in this field
tells OASIS how to find the inflow values. Depending upon the entry, you need to enter supporting information in a pattern
table, a time-series table, or in OCL. If the Inflow field is blank, there will be no inflow at the node.

Inflows are shown in Figure 2.1.0 by arrows that end at nodes but do not originate at other nodes.

2.1.4 TERMINAL NODES

A terminal node is a node where the router can send water out of the system. That is, all water that enters a terminal node is

leaving the system. This is to be distinguished from the inflow discussed in section 2.1.3, because the LP router decides how

much water leaves the system at a terminal node. Of course, the router’s decision is determined by the operating rules that

you give to it. See section 2.2.0 for more on the LP router.

A terminal node is not a node type like junction, reservoir, and demand. Either junction nodes or reservoir nodes may be

terminal nodes. Demand nodes are not referred to as terminal nodes, although a demand node without return flow does

behave similarly to a terminal node.

-20-

A terminal node is any junction or reservoir node that has

 no arcs leaving it.

 no arcs entering that can have reverse flow.

To create a terminal node, add a record for the node to the Node table (section 4.5.3 part B). There has to be at least one
arc entering this node listed in the Arc table (section 4.5.3 part C), but no arcs leaving the node. None of the arcs that enter
this node may be capable of reverse flow.

OASIS does not write a continuity-of-flow constraint (section 2.2.4) to the LP for terminal nodes, and it does not display a

balance sheet for a terminal node in the balance-sheet output (section 5.2.0).

It is good practice to have only one terminal node in a system, so that it is easily recognized as the terminal node. However,

you may create as many terminal nodes as you like.

2.2.0 DECIDING HOW WATER IS ROUTED

OASIS is designed so that the decisions in a water system are simulated by a linear-programming (LP) router. The design

of OASIS is intended so that you do not need previous experience with LP in order to use OASIS, and this documentation

strives to minimize reliance on LP terminology. Chapter 7 provides a more technical reference for those who need better

understanding of the LP.

Within this LP router is the mixed-integer LP-solving package called XA, developed by Sunset Software Technology. The LP

router consists of XA, plus those routines in OASIS that write out the LP problem set, feed it to XA to solve, and receive the

results from XA. The results that XA gives to OASIS comprise a simultaneous solution of all the decision variables (the

unknowns).

The LP problem set (or just the LP) is a set of mathematical statements that are linear with respect to the unknowns, or

decision variables. Non-decision variables go into the LP as values, so the rules do not have to be linear with respect to any

non-decision variables.

We have divided the operating rules that the LP expresses into two categories: goals and constraints. Every rule is either a

goal or a constraint, as we will explain in the following sections.

2.2.1 DECISION VARIABLES

Decision variables are the unknown variables whose values the LP router solves, or “decides”. The principal decision

variables are:

 Flow in an arc. For every arc you enter into OASIS, the LP router automatically creates a flow variable.

 Storage at a reservoir node. For every reservoir node you enter into OASIS, the LP router automatically creates a

storage variable.

 Delivery at a demand node. For every demand node you enter into OASIS, the LP router automatically creates a

delivery variable.

There are other decision variables which are documented in section 7.2.0, although you should not need to know about them

until you have some experience with OASIS. You may create new decision variables with the OCL udef command (section

2.5.1 part A).

-21-

2.2.2 OPERATING CONSTRAINTS

Operating constraints are rules that the LP router can not violate. They may be expressed as equalities, such as:

QT100101 + QT400101 = QT101333 + 456.7

Or they may be inequalities, such as:

QT101333 < QT500600 - 300.33

In these examples, the QT variables are actual names for flow variables that could be written to the OASIS LP. Although

most users should not need to refer to the LP in this form, there is a complete description of the QT variables and other parts

of the LP in Chapter 7.

When the LP router solves, it must comply with all of the constraints in the LP. If a solution cannot be found that satisfies all

of the constraints, then the LP is infeasible. An infeasible LP causes a fatal error in an OASIS run.

Constraints are often used to define physical rules in the system, or to define the relationships between variables. A constraint

would not be used to model such rules as “deliver water to node 300", “maintain in-stream flow in arc 120.670", or “keep at

least 400 million gallons of water in reservoir node 346". These are rules which can not be met under all circumstances, so

they should be modeled as goals.

OASIS models many of the standard operations as constraints or parts of constraints that it automatically adds to the LP. For

example, the model never loses or “creates” water in its accounting because every node has a continuity-of-flow constraint

(section 2.2.4). Inflow and evaporation are two of the terms in the continuity-of-flow constraint. You may define a standard

maximum flow for an arc, which constrains that flow from being more than an upper limit. Another standard constraint is the

fact that the delivery to a demand node can never be more than the demand. You can create new constraints of your own

design with OCL commands (section 2.5.0).

When developing a new rule, you must determine whether to enter it into OASIS as a goal or a constraint. If the rule is not a

relationship that absolutely must be obeyed, then it probably should be a goal, not a constraint.

2.2.3 OPERATING GOALS AND WEIGHTS

Operating goals are rules that express routing decisions the LP router should try to make. Meeting a goal is not a matter of

violating or not violating a rule. Furthermore, we don’t think of the router as being “forced” to meet a goal. Some examples

of goals are:

 Deliver as much as possible to demand node 340

 Route as much flow as possible through arc 901.234

 Do not route any flow through arc 901.234 unless absolutely necessary.

 Prefer to route flow through arc 320.100 before routing any through arc 600.200, but prefer routing flow through arc

600.200 over arc 789.123.

Operating goals are a very powerful tool in OASIS, and you must appreciate this in order to use OASIS effectively. Note that

all of the above examples express operations that might not always be possible to satisfy. If we wanted to express these rules

as constraints, we would have to write lots of conditions to compute things like “how much is possible”, “is absolutely

necessary”, “the first one is full, so we can put some into the second one”, and “the second one is not full, so none goes into

the third one”. But with OASIS we simply and easily express what the goals are, and we let the LP router determine how to

meet the goals.

The last of the above examples illustrates the important fact that goals are by their very nature in competition with other

goals. It is expected that sometimes some goals will have to be met at the expense of others. Therefore, we rank the goals by

giving each one a weight or penalty. A penalty is simply another word for a negative weight.

-22-

One place you provide weight values is in the weights database file (section 4.5.7). The weights given in this file are assigned

to standard decision variables, such as storage, flow, and delivery. As the LP router solves, we can think of it as scoring

points for each decision variable. The score is equal to the weight value times the value of the decision variable. For

example, if the weight on the flow through an arc is 50 points, and the value of the flow is three volume units, then the router

receives 150 points. The router will solve the LP routing problem so that it receives the maximum possible points. This is

what LP solvers do, and you do not need to know how it does it.

To help understand weights, consider the following facts:

 Positive weight on a decision variable encourages the LP router to maximize the value of that variable as much as it

can.

 Negative weight on a decision variable encourages the LP router to minimize the value of that variable as much as it

can.

 The LP router is indifferent to the value of a variable whose weight is zero.

 The router does what it can to move water from lower weight to higher weight.

 When there is more than one possible routing decision, the router makes the decision that gets the highest net number

of points.

 When there is more than one possible routing decision that get the same number of net points, the router is

indifferent as to which one is chosen. This results in alternate optima. See section 2.2.5 for more discussion of

alternate optima.

Remember that what is possible for the router is defined by the set of constraints. See section 2.2.2 for a discussion of

constraints.

Besides the weights database file, you can apply weights through OCL. With the target command (section 2.5.1 part E), you

apply a penalty to the deviation of a user-defined target value from a user-defined target expression. With the minimax

command (section 2.5.1 part F), you apply a penalty to a minimax variable, which will tend to equalize two or more user-

defined quantities.

In summary, you can define the following goals for OASIS:

 Weight entered in the weights database file (section 4.5.7) encourages the router to maximize or minimize standard

decision variables: flow , storage, and delivery. For example, weight on a storage variable defines a goal of keeping

or increasing water in storage.

 The OCL target command (section 2.5.1 part E) defines a goal of making a user-defined target value equal to a user-

defined target expression.

 The OCL minimax command (section 2.5.1 part F) defines a goal of equalizing two or more user-defined quantities.

It does this by minimizing the largest of those quantities.

All of these goals are defined by their weights. If you forget to apply a weight, or make it zero, it is as if the goal did not

exist.

-23-

2.2.4 CONTINUITY-OF-FLOW CONSTRAINTS

There is one especially important constraint that we must discuss now. This is the continuity-of-flow constraint, which

OASIS automatically generates for every node in the system (except terminal nodes) and enters into the LP. Once you

understand that the continuity-of-flow constraints are being automatically generated, you can usually take them for granted.

However, it is useful to understand some things about them.

The continuity-of-flow constraints ensure that the model obeys the physical truth that mass (or volume) is conserved as water

flows. At a junction node, the continuity-of-flow constraint has this form:

(sum of arc-flow in) + (inflow) = (sum of arc-flow out)

The arc-flow in and the arc-flow out are decision variables, but the inflow is a known quantity. This constraint assures that if

a volume of water goes into a node, the same volume of water comes out — it can not leave the system, unless you

specifically create a negative inflow value at the node.

At a reservoir node, the continuity-of-flow constraint has this form:

 (sum of arc-flow in) + (inflow) - (evaporation)
 + (beginning-of-period storage)
 = (sum of arc-flow out) + (end-of-period storage)

The arc-flow in, the arc-flow out, and the end-of-period storage are decision variables, but the inflow, evaporation, and

beginning-of-period storage are known quantities.

At a demand node, the continuity-of-flow constraint has this form:

(sum of arc-flow in) + (inflow) = (delivery)

The arc-flow in and the delivery are decision variables, but the inflow is a known quantity. Note that arc-flow out is not part

of this constraint. It is assumed that you will not create arcs that come out of a demand node. However, if you do, they will

still not be written into the continuity-of-flow constraint. See section 2.5.2 for more on how to handle this.

At a terminal node, no continuity-of-flow constraint is written. Thus, water that goes into a terminal node does not stay in

the system.

Notice that the evaporation and inflow terms are part of the continuity-of-flow constraints, and they are known quantities.

Thus, we can say that the system is constrained to these exchanges with the outside world, and the router can not change the

value of the exchanges. Therefore, if the inflow or evaporation can not be accommodated in the system (that is, in conflict

with other constraints), then you could have an infeasible LP, and OASIS would experience a fatal error.

-24-

Figure 2.2.5

Example of Alternate Optima

2.2.5 ALTERNATE OPTIMA

We said in section 2.2.3 that the LP router always finds the maximum number of points that can be earned from the weight

values. However, there may be more than one way to earn that maximum number of points. If so, then we say there are

alternate optima. Consider this simple example of a system with only three nodes:

Initial volume stored in each reservoir node: 100 AF

Demand at node 906: 20 AF

Maximum flow through arc 500.906: 8 AF/period

Maximum flow through arc 555.906: 16 AF/period

Weight on storage in each reservoir node: 2

Weight on delivery to node 906: 10

No inflow or evaporation.

The maximum number of points that the LP router can earn is 200 points for a full delivery to node 906 plus 360 points for

leaving the rest of the water in storage in the two reservoir nodes (560 points total). This could be accomplished by taking 8

AF from node 500 and 12 AF from node 555. It could also be done by taking 4 AF from node 500 and 16 AF from node 555,

and there are a infinite possibilities between these two options! These are the alternate optima.

Which of the infinite ways will the LP router choose? In fact, there is no way to predict what the LP router will do here. By

making the weights equal on the two reservoirs, you are effectively telling the LP router that it doesn’t matter!

Usually, you should try to avoid alternate optima, because it may lead to inconsistent results. However, when using multiple

priority levels, you will actually want alternate optima in the early priority levels, so that the LP router can choose from

among the alternate optima in later priority levels. That is, you will want to create alternate optima on purpose. See section

2.2.6 for more about priority levels.

In the above example, we could avoid alternate optima by giving different weights to the two reservoir nodes. Suppose the

water from reservoir 555 is more desirable. We could change the weight on reservoir node 500 to 3, and the weight on

reservoir node 555 remains at 2. Now there is only one way for the LP router to maximize the points earned. It will take 16

AF from node 555, and 4 AF from node 500, to earn a total of 656 points.

What if we want to model a rule that specifies equal use of the two reservoirs? This rule could be a goal to try to make the

flow out of the reservoirs equal, or to try to make the storage in the two reservoirs equal. Either way, we could model the

situation by using the equal storage weights from the original example, and adding a minimax command. The minimax

command allows you to model a goal of keeping two or more quantities equal. Furthermore, the addition of a minimax

command would mean that there are no longer alternate optima. See section 2.5.1 part F for more about minimaxes. Please

note that without the minimax command, there is nothing in the original example that tells OASIS to try to balance its use of

the two reservoirs.

-25-

2.2.6 PRIORITY LEVELS

Multiple priority levels are an advanced feature that are usually not needed for models of small systems. However, they are a

powerful tool in OASIS, and they make it possible to model some very complex operational rules.

In OASIS, every weight value is associated with a priority level 1-6. You specify what the priority level is when you enter the

weight or penalty input. Therefore, it can be said that every operating goal is associated with a particular priority level.

OASIS calls the LP solver at least once for each priority level. In general, priority 1 is the first call to the solver, priority 2 is

the second, and so on.

OASIS determines how many priority levels there are by the largest priority number that you enter in the input. For example,

if the highest priority number that you have assigned to any weights is 3, then there are three priority levels.

The process of solving each priority level involves these steps:

1. OASIS solves the LP, using only the weights of the current priority level.

2. OASIS adds a constraint which restricts the decisions to the alternate optima (section 2.2.5) of the priority level

that was just solved.

3. For each additional priority level, OASIS returns to step 1.

If there is only one priority level, then this process is trivial, and you do not need to worry about how the LP router handles

multiple priority levels.

To make sure there is only one priority level, make sure that all of the priority level entries in the weights database (section
4.5.7) are “1", and all of the priority fields in the OCL target (section 2.5.1 part E) and minimax (section 2.5.1 part F)
commands have “1" in them.

Notice that step 2 constrains the solution of the next priority level to the alternate optima of the priority level that was just

solved. In order to use priority levels effectively, you must design your weights so that there are alternate optima within the

earlier priority levels. If well designed, your set of weights and priorities “close in” on a single, correct solution by reducing

the alternate optima. Thus, you would not want alternate optima in the last priority level. See section 2.2.5 for discussion of

alternate optima.

Since many models do not need them, why would you ever want to use multiple priority levels? There are two very good

reasons.

 Avoid excessive scaling of weights. If you have a very complicated system, with a very large number of competing

operating goals, you could develop a large range of weights. For example, some of your weight values might be

20000, 3000, 500, 100, 20, 5, and 1. It can be confusing to keep track of these different scales. Furthermore, it may

strain the computational precision of the LP solver. Therefore, a complicated system may be easier to model with

multiple priority levels.

 Weights in one priority level do not have additive effects with weights in another priority level. Within a

priority level, each potential routing decision must be considered by the net number of points that the router would

earn from that decision. When there are a large number of operating goals involved in a decision, you have to add

together the points contributed by each goal in order to understand where the water will go. Sometimes you want the

weights to add together, sometimes you do not. If you want the weights to add together, put them in the same

priority level. If you do not want them to add together, you may be able to put them into different priority levels.

This can reduce a great deal of confusion.

-26-

A third use of multiple priority levels relies on an alteration of the definition of a priority level.

 Use the LP router to compute “what-if” information. That is, you need information about how the system would

operate if there were a different set of goals than those that ultimately determine the routing decision. This is a very

advanced use of OASIS. In order to do this, you must use the OCL cancel command (section 2.5.1 part H). If a

priority level has been canceled, then subsequent priority levels are not constrained to the alternate optima of that

priority level.

Multiple priority levels cannot be combined with multiple-period-optimization (MPO) (section 2.2.7).

2.2.7 MULTIPLE-PERIOD OPTIMIZATION (MPO)

OASIS supports multiple-period optimization (MPO), meaning that the LP router is able to compute decisions for more

than one time step in a single solve. You may also use MPO to have OASIS do no LP solve during particular time steps.

Solving for one time step at a time is considered the standard mode of operation for OASIS, and we consider MPO to be a

very advanced feature which most users do not need. We recommend you skip reading this section unless you plan to use

MPO.

To understand the discussion of MPO steps, you probably need to understand how OASIS simulates a time cycle (section

2.8.1).

In order to do MPO, you must be using the Steps input table (section 4.5.2 part D). For each step of the time cycle, you

assign a number of time steps to solve through the Solve field of the Steps table. An entry of zero means do not do any LP

solve. An entry of 1 means solve an LP for the current step (as in the standard case). An entry of 2 means that a single LP

solve is done for the current step and the first step after it. In the latter case, we say there are two MPO steps. An entry of 3

means that a single LP solve is done for the current step and the next two steps after it. In this case, we say there are three

MPO steps. OASIS does not have a strict upper limit on the number of MPO steps.

Note that MPO cannot be combined with multiple priority levels (section 2.2.6). If you use multiple priority levels, all time

steps in the Steps table must have an entry of 1 in the Solve field. If you are doing MPO, then all weights must have a priority

level of 1.

To do MPO, edit the Solve field of the Steps table (section 4.5.2 part D). Entries greater than 1 indicate that more than one
time step is solved during the given time step. Make sure that there is only one priority level (section 2.2.6).

To make sure that you are not doing MPO, make sure that all entries in the Solve field of the Steps table (section 4.5.2 part
D) are “1". If you are not using a Steps table, then you can be sure you are not doing MPO.

There are different ways to use MPO. One is to simulate a decision-making process where decisions that span several steps

are made at one time, and are not changed. For example, suppose our time cycle is one week, and our time step is one day.

Thus, there are seven steps in the cycle. Using the Solve field of the Steps table, we can assign seven MPO steps to the first

-27-

day of the week, and zero to the rest. Refer to the table below, which contains some of the information from the Steps table.

This would mean that all routing for the entire week is decided at the start of the week, and it is not changed as the week goes

on. The decisions for days two through seven were solved on day one. When OASIS evaluates days two through seven, it

does not change any decision variables, because the number of MPO steps assigned to those days is zero.

Step Number Number of MPO steps (Solve field)

1 7

2 0

3 0

4 0

5 0

6 0

7 0

Another way to use MPO is to simulate a process where current decisions account for future decisions, but the decisions can

always be updated using current information. For example, suppose our time step is one day. Our time cycle only contains

one step, and we assign that step with three MPO steps. Refer to the table below, which contains some of the information

from the Steps table. Thus, every time step of the simulation, OASIS will make decisions for the current step plus the next

two future steps. The information for decisions of these future steps remains in memory until the next solve. When these

steps become the current step, that information can be put to use, but the new solve of the current step overwrites the values

that were given during the previous step. This differs from the previous example, where no overwriting was done.

Step Number Number of MPO steps (Solve field)

1 3

When doing MPO, you should be mindful of the assumptions about future knowledge, and whether they are appropriate to

your analysis. You do have alternatives to assuming perfect future knowledge. When evaluating a time step that uses MPO

you can use the OCL Set command (section 2.5.1 part C) to set the future value of a variable such as inflow. This future value

could be computed using the assumptions and available information of a real-world forecast. In subsequent steps, you can

overwrite these future values as the information improves.

When OASIS creates the LP for a time step that contains MPO:

 There is a separate instance of each decision variable (section 7.2.0) for each MPO step. For example, if there is a

reservoir with node number 100, and there are two MPO steps, then the LP contains one variable for storage in

reservoir 100 at the end of the current step, and another variable for storage in reservoir 100 in the following step.

See section 7.4.0 for more on the multiple copies of each variable.

 For weights entered in the weights database (section 4.5.7), each instance of a given variable receives the same

weight. This rule is applied differently to weights on reservoir storage – see section 4.5.7 part B.

 There is a separate instance of each LP constraint (section 7.3.0) for each MPO step. See section 7.4.0 for more

details.

 All OCL commands (section 2.5.1) that precede the command solve (section 2.5.1 part G) are evaluated once for

each MPO step. First, OASIS evaluates all OCL commands for the first MPO step. When the solve command is

encountered, it repeats the entire list of OCL commands for the second MPO step, and so forth. During this

iteration, the value of the OCL variable MPO_step (section 4.7.4) changes to reflect the MPO step currently under

evaluation. When this process has been finished for all MPO steps, the LP is solved. Those OCL commands that

follow the solve command are not evaluated multiple times for MPO steps.

 As mentioned above, there is an instance of each decision variable for each MPO step. In OCL, you distinguish

between the different instances of decision variables by using time indices (section 4.7.4 part A). If you are not

doing MPO, then the time indices cannot be applied to decision variables.

-28-

 In OCL, you can apply the flag NoMultiple to the Udef (section 4.7.2 part B), Target (section 4.7.2 part E), and

Constraint (section 4.7.2 part D) commands. This flag tells OASIS to evaluate the particular command or variable

only once per time step. In other words, it suppresses the default rule to evaluate a separate instance of the command

or variable for each MPO step. When NoMultiple is used, the evaluation is done during the first MPO step of the

time step.

 Some of OASIS’ standard computations are more difficult with MPO. Reservoir elevation (section 2.4.0 part F),

area, and evaporation (section 2.4.0 part G) are always computed after the LP has been solved. However, when

evaluating for MPO, this means that these values cannot be evaluated until all of the steps have been solved. Thus,

OASIS assumes that these variables are equal to their values at the beginning of the first MPO step.

-29-

2.3.0 MODEL INPUT

With OASIS, your model is completely user-defined. You define the model by entering its description in input files. Every

time OASIS is run, it reads the information from the input files. The input includes files in different formats, including MS

Access, ASCII (plain text), and HEC-DSS.

The input files are managed by the OASIS GUI. The GUI provides controls for editing the input that is stored in text files

and MS Access files. For OCL files, the GUI passes control to a program called VEDIT. For HEC-DSS files, the GUI passes

control to a program called HecDssVue. See Chapter 3 for complete documentation of the GUI.

For users who are comfortable with managing computer files and working with OASIS, the input files can be edited with

third-party software – working outside the GUI. For example, MS Access files can be edited with MS Access. ASCII files

can be edited with a text editor, such as VEDIT, Windows WordPad, or a word processor program. HEC-DSS files must be

edited with DSS utility programs.

There are certain input parameters that can be specified in the command line. See section 4.1.0 for more information.

2.3.1 RUN DIRECTORY

OASIS input is organized so that all input files belonging to a particular simulation run can be found in a single directory,

called the run directory. All output files are written to this directory as well. This way, all the files that belong to a particular

simulation run are contained in one place, distinct from the files of any other run.

You tell OASIS what the run directory is by entering its name in the model pointer file, which is always named directry.nam

(section 4.3.0). Alternatively, you can specify the name of the run directory with the command-line parameter DIR (section

4.1.0).

When you provide the names of input files, you can give them with relative or absolute path information. Thus, you can

easily organize your files into subdirectories of the run directory. These paths can also use the “directory up” symbol, a pair

of dots, to locate files outside of the run directory. An absolute path can also be used to locate files outside of the run

directory. For example, you might wish for several different runs to rely on a single copy of a certain input file. This way, a

change to that one input file will automatically be changed for all of those runs. It would be logical to place this file outside

of the individual run directories.

The OASIS GUI has many features that make it easy to manage run directories (section 3.4.0). However, the GUI also

imposes more rigid requirements on the format of the run directory. Consult with HydroLogics staff if you wish to locate

certain files outside the run directory but aren't sure whether it will work with the GUI.

-30-

2.3.2 FILES THAT OASIS READS

The simulation program model.exe reads several different input files, which are listed below. Chapter 3 tells how these files

are organized for use with the GUI. Chapter 3 also lists other files that are not necessarily read by model.exe, but by other

programs in the OASIS package.

Note that the static databases (items D through I and item L below) can be combined together. For example, the seven static

databases can be combined into one large database. See 4.5.0 for more information.

A. Identity Key. OASIS reads this file to get information about the user license, which it prints in its run window and

in output files. See section 4.2.0 for reference.

B. Pointer File. This ASCII file is always named directry.nam and is located in the same directory as the OASIS

executable file. OASIS reads this file to learn the name of the run directory. See section 4.3.0 for reference.

C. Control file. This ASCII file is found in the run directory. OASIS reads this file to learn the names and paths of the

various input files, the name and path of the output file, and some output flags. See section 4.4.0 for reference.

D. Time parameters database. The name and path of this MS Access file is given in the control file. OASIS reads

this file to learn the size of the time step, the first and last time steps to simulate, whether to work in water years or

regular years, and other parameters related to the computation of time. See section 4.5.2 for reference.

E. System database. The name and path of this MS Access file is given in the control file. OASIS reads this file to

learn the units-of-measurement system, nodes and arcs in the system, as well as parameters describing the arcs,

reservoir nodes, and water quality. It may read formatting information for the balance sheet output. See section

4.5.3 for reference.

F. Demand database. The name and path of this MS Access file is given in the control file. OASIS reads this file to

learn parameters describing the demand nodes. See section 4.5.4 for reference.

G. Inflow database. The name and path of this MS Access file is given in the control file. OASIS reads this file to

learn parameters describing the inflows and water quality. See section 4.5.5 for reference.

H. Initial conditions database. The name and path of this MS Access file is given in the control file. OASIS reads

this file to learn the storage and water quality values in reservoirs at the beginning of the first time step of simulation.

See section 4.5.6 for reference.

I. Weights database. The name and path of this MS Access file is given in the control file. OASIS reads this file to

learn the weights to apply to the standard decision variables. See section 4.5.7 for reference.

J. OCL file. The name and path of this ASCII file is given in the control file. OASIS reads this file to get special

operating rules that you define with OCL commands. See section 4.7.0 for more information.

K. OCL static database. The name and path of this MS Access file is given in the OCL file. This file is optional.

From this file, OASIS gets supplemental data referred to in the OCL file, including pattern data and look-up tables.

See section 4.5.8 for reference.

L. Time-series files. The names and paths of these files are given in the OCL file and in the File ID tables of some of

the MS Access databases. These files are optional. From these files, OASIS gets supplemental data referred to in

the OCL file or in the static databases. See section 4.6.0 for reference.

-31-

2.4.0 STANDARD OPERATING RULES

You tell OASIS what are the operating rules of the system by editing OASIS’s input files. There are two conceptual tiers to

OASIS input: standard input, and OCL input. Standard input allows you to create rules of a standardized form. This is

often useful, because most water resources systems have similar types of rules. With these standardized forms, you merely

supply parameter values that define the rule.

OCL input allows you to create rules with forms of your own design. This makes OASIS much more flexible. Section 2.5.0

discusses OCL operating rules.

The present section discusses each of the standard operating rules. It tells you how to handle the input for the common uses

of each operating rule. Each of the standard operating rules was developed to model a certain common situation in a water

resources system. However, in the description of each operating rule, we note that you are free to find creative uses for the

standard rules. There are also alternative ways to model almost any problem.

A. MAXIMUM FLOW IN AN ARC

By default, there is no maximum flow in an arc. You may apply a standard maximum-flow constraint to any arc. Because

this maximum flow is a constraint, it can cause an infeasible LP if it conflicts with other constraints.

You tell OASIS whether there is a maximum-flow constraint on each arc in the Arc table. The code in the Arc table tells

where the values of the maximum flow are found. You can specify the values with pattern, time-series, or OCL input. See

section 4.5.3 part C for complete information.

To add, change, view, or remove a maximum-flow constraint at an arc, open the Arc table (section 4.5.3 part C). Find
the record for the arc, and the Max Flow field. The code in this field tells whether the maximum-flow values are stored in a
pattern table, a time series table, or in the OCL file. Go to the appropriate one of these three data sources to view or change
the data. If this field is blank, then there is no maximum flow at the arc. Furthermore, you can change the source of the data
from one type to another (for example, from pattern to OCL). See section 4.5.3 part C for complete information.

The maximum flow is generally used to model the physical capacity of a conveyance feature. It can also be used to model a

maximum that is dictated by policy. You are free to find creative uses for the standard maximum flow — only remember that

it is a constraint. Many policy maximum rules, such as flood control levels, can be violated under extreme circumstances, so

they should not be modeled as constraints.

There are many alternatives to the standard input for maximum flow in an arc. You can use the standard minimum (target)

flow to create a maximum flow target (goal) (section 2.4.0 part B). You can also use the OCL constraint command to create

a maximum flow constraint (section 2.5.1 part D). The OCL target command (section 2.5.1 part E) could be used to create a

maximum flow constraint or target.

B. MINIMUM (TARGET) FLOW IN AN ARC

The standard minimum-flow rule in OASIS could more appropriately be called a target flow. One reason is that it defines an

operating goal, not a minimum-flow constraint. The other reason is that it could actually be used to model a maximum flow.

However, the name minimum flow has long been applied to this standard rule, so the name stays for continuity.

By default, there is no minimum (target) flow at an arc. You may apply a minimum-flow goal to any arc. Because this

minimum flow is a goal, it cannot be the direct cause of an infeasible LP.

You tell OASIS whether there is a minimum (target) flow on each arc in the Arc table. The code in the Arc table tells where

the values of the minimum (target) flow are found. You can specify the values with pattern, time-series, or OCL input. See

section 4.5.3 part C for complete information.

-32-

To add, change, view, or remove a minimum (target) flow at an arc, open the Arc table (section 4.5.3 part C). Find the
record for the arc, and the Min Flow field. The code in this field tells whether the minimum-flow values are stored in a pattern
table, a time series table, or in the OCL file. Go to the appropriate one of these three data sources to view or change the
data. If this field is blank, then there is no minimum flow at the arc. Furthermore, you can change the source of the data from
one type to another (for example, from pattern to OCL). See section 4.5.3 part C for complete information.

Because this is an operating goal, there must be weight associated with it. Thus, there must be a record in the Weight: Arc
table (section 4.5.7 part A) for any arc that has a standard minimum-flow rule. The weight value in the A Wt field enforces the
minimum flow. There must be an accompanying priority level in the A Pri field. Make sure that the weight in the A Wt field is
higher than the weight in the B Wt field.

The minimum (target) flow is commonly used to model in-stream flow rules, such as the rules we often find below a dam to

maintain habitat or water quality. It can be used to model any kind of policy flow target. You are free to find creative uses

for the standard minimum flow — only remember that the LP router is never constrained to meet the minimum flow.

There are many alternatives to the standard input for minimum (target) flow in an arc. You can use the standard maximum-

reverse-flow rule to create a minimum-flow constraint (section 2.4.0 part C). You can also use the OCL constraint command

to create a minimum-flow constraint (section 2.5.1 part D). The OCL target command could be used to create a minimum-

flow constraint or target (section 2.5.1 part E).

The standard minimum (target) flow rule can actually be used to model a maximum-flow target. The only trick to doing so is

that the weight on exceeding the minimum-flow value would have to be negative.

To make a maximum-flow target at an arc, follow all the steps for creating a standard minimum-flow target, knowing that
the values labeled as a minimum flow are really maximum-flow values. In the Weight: Arc table (section 4.5.7 part A) make
the value in the B Wt field negative. There must be an accompanying priority level in the B Pri field. Make sure that the
weight in the A Wt field is higher than the weight in the B Wt field.

C. MAXIMUM REVERSE FLOW IN AN ARC

The standard rule for maximum reverse flow is really a minimum-flow constraint. However, the name minimum flow is

already used by the standard rule for minimum (target) flow. Furthermore, the name maximum reverse flow is quite

appropriate for the most common use of this standard rule.

By default, the flow in an arc is constrained to be no less than zero, making the arc unidirectional. You may apply a standard

maximum reverse flow constraint to any arc. If an arc has a negative value for the maximum reverse flow, then it is a two-

way arc, capable of reverse flow . Because the maximum reverse flow is a constraint, it can cause an infeasible LP if it

conflicts with other constraints.

You tell OASIS whether there is a maximum-reverse-flow constraint on each arc in the Arc table. The code in the Arc table

tells where the values of the maximum reverse flow are found. You can specify the values with pattern, time-series, or OCL

input; or as a mirror of the maximum flow. See section 4.5.3 part C for complete information.

To add, change, view, or remove a maximum-reverse-flow constraint at an arc, open the Arc table (section 4.5.3 part C).
Find the record for the arc, and the MaxRev Flow field. The code in this field tells whether the maximum-reverse-flow values
are stored in a pattern table, a time series table, or in the OCL file. Go to the appropriate one of these three data sources to
view or change the data. If this field is blank, then the flow in the arc can be no less than zero. Furthermore, you can change
the source of the data from one type to another (for example, from pattern to OCL). See section 4.5.3 part C for complete
information.

-33-

To make the maximum reverse flow in an arc equal (but opposite) to the maximum flow, open the Arc table (section
4.5.3 part C). Find the record for the arc, and the MaxRev Flow field. Change the code in this field to MIRROR. OASIS will
automatically set the maximum reverse flow to be the negative of the maximum flow, no matter where the maximum-flow
values come from. Do not try to enter values for the maximum reverse flow.

To make an arc with unlimited flow in the reverse direction, open the Arc table (section 4.5.3 part C). Find the record for
the arc, and the MaxRev Flow field. Change the code in this field to MIRROR. Make sure the entry in the Max Flow field is
blank. Do not try to enter values for the maximum reverse flow.

If the maximum reverse flow has a positive value, then you do not have a two-way arc, but rather an arc where the flow is

constrained to be no less than some positive value.

Specifying a maximum reverse flow is the only way to enable two-way flow in an arc. However if you have a two-way arc,

you can always constrain the reverse flow further with the OCL constraint command (section 2.5.1 part D), or set a target or a

constraint with the OCL target command (section 2.5.1 part E).

D. DEMAND AND DELIVERY

Every demand node has a demand value, usually referred to simply as the demand. The water routed into the demand node is

called delivery. The demand minus the delivery is the shortage. It is a standard operating goal to deliver water to a demand

node. As a goal, this rule can not be implicated as a cause of an infeasible LP. There are also standard operating constraints

on the delivery. Specifically, the delivery can not be less than zero or more than the demand. It is possible that these

constraints could contribute to an infeasible LP.

By default, OASIS assumes that water delivered to a demand node leaves the system. If you attach arcs to a demand node to

return water to the system, OASIS does not automatically constrain continuity of flow between these arcs and the demand

node. See section 2.5.2 for an explanation of how to handle return flow .

You tell OASIS where to get the demand values for each demand node through a code in the Demand table (section 4.5.4 part

A). The code tells whether the values are specified with pattern, time-series, or OCL input. See section 4.5.4 part A for

complete information.

To change or view the demand at a demand node, open the Demand table (section 4.5.4 part A). Find the record for the
node, and the Demand Type field. The code in this field tells whether the demand values are stored in a pattern table, a time
series table, or in the OCL file. Go to the appropriate one of these three data sources to view or change the data. You can
change the source of the data from one type to another (for example, from pattern to OCL). See section 4.5.4 part A for
complete information.

Because this is an operating goal, there must be weight associated with it. Thus, there must be a record in the Weight:
Demand table (section 4.5.7 part C) for each demand node. The weight value in the Wt field enforces the demand. There
must be an accompanying priority level in the Pri field.

The standard demand rule can be used to model any feature where water from the system is consumed. It can also be used to

model features where water should be delivered, but some or all returns to the system (if you want to model delivery that

returns to the system, see section 2.5.2). You are free to find creative uses for demand nodes — only remember that the LP

router is never constrained to make deliveries, and it is always constrained from delivering more than the demand.

There are alternatives to using a demand node. If you want to model a demand where all of the delivery leaves the system,

you can create a terminal node (section 2.1.4), and use any combination of the OCL constraint command (section 2.5.1 part

D), OCL target command (section 2.5.1 part E), standard maximum flow (section 2.4.0 part A), standard minimum (target)

flow (section 2.4.0 part B), and arc weights (section 2.2.3) to make rules for the flow into the terminal node. You could also

use such rules at a non-terminal node, or at a combination of terminal nodes and non-terminal nodes.

-34-

E. INFLOW

By default, there is no inflow at a node. You may apply inflow to any node. A node cannot have more than one inflow value.

The value of the inflow is included in the continuity-of-flow constraint (section 2.2.4), so the LP router is constrained to

route the inflow. Therefore, it is possible that the inflow could be the direct cause of an infeasible LP. See section 2.1.3 for

more discussion of inflow.

The standard inflow feature can be used to model any exchange between the system and the outside world, whether the water

is coming into the system (positive inflow) or going out of the system (negative inflow). You are free to find creative uses for

inflow — only remember that the LP router is constrained to send the water into or out of the system, and the value of the

inflow is known before the LP is solved. Thus, the inflow can not be affected by any other LP operating goals or constraints.

There are alternatives to using the standard inflow. Evaporation from a reservoir node (section 2.4.0 part G), also a

constraint, is another exchange between the system and the outside world. If you want to model an exchange with the outside

world that is subject to the LP router’s control, you can make use of terminal nodes (section 2.1.4). At any terminal node, the

LP router can decide how much water is sent out of the system. Bringing water into the system is slightly more complicated,

but it can be done by creating a virtually unlimited source of water. This source would only be a modeling artifact; it is there

so the router can draw water from the source, as needed, and bring the water into the system.

F. RESERVOIR ELEVATION AND SURFACE AREA

The standard rules in the LP are all stated in terms of volume — either the volume of water stored in a reservoir node or the

volume of water that flows through an arc in a period. Reservoir elevation and surface area are not directly part of the LP, but

are computed after the LP has been solved. Both elevation and surface area are functions of the storage at the reservoir node.

You may supply elevation and surface area information at any reservoir node. This is done by entering a set of records for the

reservoir node in the Reservoir S-A-E table. This table contains the three-way look-up information for storage, area, and

elevation.

You are not required to supply information for elevation or surface area. If a reservoir node lacks an entry in the Reservoir S-

A-E table, then elevation and surface area are both zero.

Because elevation and surface area are not solved by the LP router, they cannot be the direct cause of an infeasible LP.

To add, change, view, or remove a storage-area-elevation table for a reservoir node, go to the Reservoir S-A-E table
(section 4.5.3 part C).

The reservoir surface area is needed for OASIS’s standard evaporation rule (section 2.4.0 part G). If you leave the surface

area at a reservoir node equal to the default of zero, then the evaporation computed by OASIS’s standard evaporation rule at

that node is always zero. On the other hand, if you choose to compute the evaporation at a particular node using OCL, the

formula you write may or may not depend on the reservoir surface area.

The reservoir elevation is not used for any of OASIS’s standard rules, but you can always use it in your OCL rules.

If you are doing multiple-period optimization (MPO) (section 2.2.7), then elevation and surface area computations are

complicated slightly. For all but the first MPO step, OASIS cannot compute the elevation and area in the preferred way,

because it does not yet know the storage at the beginning of the step. Thus, for all MPO steps, OASIS uses the storage and

area at the beginning of the first MPO step.

As an alternative to the standard rules for reservoir elevation and surface area, you could compute the values with OCL. If

you did this, you would probably want user-defined variables (section 2.5.1 part A) to hold the values. OASIS’s standard

elevation and surface area computations are equivalent to setting a variable with the set command (section 2.5.1 part C) after

the LP has been solved with the solve command (section 2.5.1 part G).

-35-

G. RESERVOIR EVAPORATION

By default, there is no evaporation at a reservoir node. You may apply evaporation to any reservoir node. Evaporation is

either computed by the standard formula or it is computed through OCL.

If a reservoir node follows the standard evaporation formula, then in each time step of simulation, OASIS computes the

evaporation at that node by multiplying the beginning-of-period reservoir surface area by the evaporation rate. The end-of-

period surface area is not considered in the evaporation calculation. You tell OASIS where the values of the evaporation rate

are found through a code in the Evaporation table (section 4.5.3 part K). You can specify the values with pattern or time-

series input. If there is no record for a reservoir node in this table, then there is no evaporation at the node. See section 4.5.3

part K for complete information.

If the evaporation is computed by a formula in OCL, then it may or may not depend on an evaporation rate, and it may or

may not depend on the reservoir surface area.

The value of the evaporation rate may be positive or negative. Negative evaporation is usually used to model precipitation

that falls directly on the reservoir. Whether it is computed by the standard formula or by OCL, the value of the evaporation is

included in the continuity-of-flow constraint (section 2.2.4), so the LP router is constrained to route the evaporation out of

the system (for negative evaporation, into the system). Therefore, it is possible that the evaporation could be a direct cause of

an infeasible LP.

To add, change or view the standard evaporation rate at a reservoir node, open the Evaporation table (section 4.5.3 part
K). There should be a record for the reservoir node. The Evaporation Type field tells where the evaporation-rate values are
stored, either in a pattern table or a time series table. Go to the appropriate one of these data sources to view or change the
data. You can change the source of the data from one type to another. See section 4.5.3 part K for complete information.
You must also check the surface area input for the reservoir. This is found in the Reservoir S-A-E table.

To remove the standard evaporation from a reservoir node, you have several choices:

 Remove the record for this node from the Evaporation table (section 4.5.3 part K).

 If the values come from a pattern table, change the factor in the Factor field to zero in the Evaporation Pattern table
(section 4.5.3 part L).

 Change the surface area to zero in the Reservoir S-A-E table (section 4.5.3 part J).

To compute evaporation of a reservoir node in OCL, open the Evaporation table (section 4.5.3 part K). There should be a
record for the reservoir node. In the Evaporation Type field, enter OCL. In the OCL file, create a Set command (section 2.5.1
part C) for the evap variable (section 4.7.4) of the reservoir node. You may decide to make the evaporation depend upon the
evap_rate variable. If so, a Set command for the evap_rate variable must come before the Set command for the evap
variable.

If you are doing multiple-period optimization (MPO) (section 2.2.7), then evaporation computations are complicated slightly.

For all but the first MPO step, OASIS cannot compute the evaporation in the preferred way, because it does not yet know the

storage at the beginning of the step. Thus, for all MPO steps, OASIS uses the evaporation at the beginning of the first MPO

step.

There are alternatives to using the standard evaporation rule. You could make a standard inflow (actually an “outflow”) at the

reservoir node, or an arc-flow from the reservoir node to a terminal node. You could enter any combination of standard rules

and/or OCL rules to provide values for the inflow or to control the arc-flow.

-36-

Figure 2.4.0 part H

Diagram of reservoir operational zones and rule curves

H. RESERVOIR OPERATIONAL ZONES OR RULE CURVES

Each reservoir is modeled with one or four standard operational zones. Thus, we refer to single-zone and four-zone

reservoirs. The boundaries between the operational zones are called rule curves. They are called “curves” because they can

vary with time. Figure 2.4.0 part H shows the operational zones of a four-zone reservoir:

The upper rule usually models the bottom of the flood pool in a reservoir. The lower rule is usually a storage target for the

reservoir. The dead storage usually means a level below which it is physically impossible to withdraw water. Although these

are the typical applications of the storage zones, you can use them however it suits your modeling need. We should be

especially careful to note that OASIS does not constrain reservoir storage from going below the dead storage.

With a single-zone reservoir, the single zone can be referred to as zone A. There is no upper rule, lower rule, or dead storage

level in a single-zone reservoir.

To the LP router, the zones of the four-zone reservoir are segments of the total storage. This procedure is equivalent to using

the OCL segment command (section 2.5.1 part B). If you ever want to model a two-zone or a 25-zone reservoir, you can do

so with the segment command. In this method, each zone is represented by a unique decision variable. The four decision

variables add up to equal the decision variable for the total storage. The segmentation is useful because each segment, or

zone, receives a different weight. This variation in weight causes the reservoir to operate differently, depending upon which

zone the water comes from.

With a single-zone reservoir, there is, of course, no need for such a segmentation.

You tell OASIS the values of the dead storage and maximum storage (capacity) in the Reservoir table (section 4.5.3 part H).

Both are constants. In the same table, you also tell OASIS where the values for the lower rule and upper rule are stored,

whether in pattern, time-series, or OCL input. By specifying that there is no lower rule or upper rule, you tell OASIS that the

reservoir node is to have a single zone. See section 4.5.3 part H for complete information.

To change or view the maximum storage or the dead storage at a reservoir node, open the Reservoir table (section
4.5.3 part H). Find the record for the reservoir node. You may edit the values in the Dead Storage or Max Storage tables.

To change or view the upper rule or lower rule at a four-zone reservoir node, open the Reservoir table (section 4.5.3
part H). Find the record for the reservoir node. The codes in the Upper Rule and Lower Rule fields tell where the data for
each is stored, either in a pattern table, a time-series table, or in OCL. See section 4.5.3 part H for complete information.
Make sure that neither of these fields contains the code NO.

-37-

To change or view the weight on a four-zone reservoir node, open the Weight: Storage table (section 4.5.7 part B). Find
the record for the reservoir node. Each zone: A, B, C, D; should receive a weight value, and each one should have an
associated priority level. Make sure that the weight on zone A is greater than or equal to the weight on zone B, that the
weight on B is greater than or equal to the weight on C, and that C is greater than or equal to D. Furthermore, it is important
that the weights have this rank ordering in each priority level. Because of this, it is probably easiest to keep all four weights in
the same priority level.

To make a single-zone reservoir node, open the Reservoir table (section 4.5.3 part H). Find the record for the reservoir
node. Change the codes in both the Upper Rule and Lower Rule fields to NO. If you change just one of the two fields to NO,
you still get a single-zone reservoir, but field that does not say NO is misleading. Note that the value in the Dead Storage
field is meaningless when you have a single zone reservoir.

To change or view the weight on a single-zone reservoir node, open the Weight: Storage table (section 4.5.7 part B).
Find the record for the reservoir node. The weight on storage in this reservoir node is given in the A Wt field, and its priority
level is given in the A Pri field. The other fields are not used for a single-zone reservoir node.

There are alternatives to using the standard reservoir rule curves. Most easily, the target command can be used to model

basic storage targets. However, be aware that if there is more than one target acting on the same reservoir at the same time,

there will be some overlap in the target deviations, where the penalties will have a cumulative effect. To avoid the cumulative

effects, you may wish to segment the reservoir storage with the segment command, then apply targets to each segment with

the target command.

-38-

2.5.0 OPERATIONS CONTROL LANGUAGE (OCL)

The standard operating rules (section 2.4.0) are tools that can be used to model the basic, most common features of a water

resources system. However, if a system is complex enough that you would need a computer model, it is likely that it is too

complex to be modeled with the standard rules alone. You will probably need to use OCL.

To apply standard rules, you enter parameter values, which OASIS applies to the LP in a form that you have little or no

control over. OCL’s great advantage is that it gives you control over the form of the rule, as well as the parameter values.

OCL is a language-based input. The concept of a language allows you to assemble complicated rules out of various syntax

elements. Furthermore, you assemble the instructions in the order that they should be performed.

Because it is a language, OCL is entered as ASCII text input. The control file tells the path and name of the OCL file that

OASIS is to read (section 4.4.0). However, from this file, you can refer to information in other files in the following ways:

 The OCL file can include other OCL files. These files can contain OCL commands, in ASCII form, just like the first

file that was named in the control file. See section 4.7.1 part H.

 The OCL file can name static and time-series databases that store supplemental data. See 4.7.1 part E and 4.7.1 part

F.

 Through OCL, you can instruct OASIS to exchange information with other computer programs, which we call

external modules. See section 2.5.1 part I.

In OCL, the unit of instruction is the simulation command. Each simulation command contains information for OASIS to

evaluate during each simulation time step. Many of the simulation commands can contain conditions. Conditions allow you

to vary the parameters of the command according to the state of the system, using “if-then”-type logic. See section 4.7.2 part

A for complete information about conditions.

OCL syntax also includes meta commands. These are very different from simulation commands. Meta commands affect the

way that OASIS reads the OCL information as it is initializing. Once all the OCL information has been read, and OASIS

begins stepping through the simulation, the meta commands have no more role. See section 4.7.0 part F for more information

about meta commands.

The major uses of OCL are:

 Assign a value to a non-decision variable with the set command (section 2.5.1 part C). Variables that you would

assign this way include user-defined variables, and standard variables for which you have told OASIS the value

would come from OCL. Standard variables that can be assigned this way include inflow, demand, maximum flow,

and others. See section 4.7.2 part F for a complete list of the variables.

 Define a new operating constraint for OASIS to enter into the LP. See section 2.2.2 for more about operating

constraints. An operating constraint can be defined with the OCL constraint command (section 2.5.1 part D) or the

OCL target command (section 2.5.1 part E).

 Define a new operating goal for OASIS to enter into the LP. See 2.2.3 for more about operating goals. There are

two major types of goals that you can define with OCL. With the first, a target, the goal is for the router to make a

target expression equal to a target value. The LP router can be penalized for letting the target deviate in either

direction from the target value. See section 2.5.1 part E for more about the target command. The second type of

goal is a minimax. With the minimax command, you tell the LP router to try to make two or more quantities equal

to each other. See section 2.5.1 part F for more about the minimax command.

 Create new simulation variables, called user-defined variables, or udefs. You can create decision variables and

non-decision variables. Udefs that have been declared can be used in other OCL commands, and are stored in model

output. See section 2.5.1 part A.

-39-

 Enter new data into the model. Of course, you can enter any parameter value as a constant in an expression.

However, OCL also allows you to refer to pattern variables and look-up tables that are stored in a static database, as

well as time-series variables stored in a time-series database. See section 4.7.1 part E and 4.7.1 part F.

 Tell OASIS when and how to solve the LP. This allows you to evaluate variables after the LP has been solved, to

change rules in between priority levels, or to iteratively re-solve a priority level until certain criteria are met. See

section 2.5.1 part G and H.

 Tell OASIS to pass control to another program and exchange data with that program. This enables OASIS to run in

parallel with other models. The other programs are referred to as external modules. They can be written in any

available computer language, and can be compiled as a dynamic link library, or as an executable application that

communicates to OASIS through the Windows message queue. See section 2.5.1 part I.

2.5.1 USING OCL SIMULATION COMMANDS

The OCL simulation command is the unit of instruction that you give to OASIS. An operating rule may be composed of one

or several OCL simulation commands. There are several different simulation commands. Each issues different types of

instructions to OASIS, and each has its own syntax.

The order in which you enter the OCL commands is important, because in each time step, OASIS evaluates the commands in

the order they were entered in the OCL file. When you change the value of a variable with the set command, the new value

will be applied to commands that come after, but not before, the set command. Usually, OASIS issues an error when you try

to use a variable before it has been set. However, this is not foolproof, for you may assign different values to the same

variable with the set command. If another command uses the value of that variable, then which value it uses depends upon the

order in which the commands appear.

Generally, you do not need to worry about the positions of the constraint, target, and minimax commands relative to each

other, since it does not matter what order goals and constraints appear in the LP. Their positions relative to the set commands

are important, as we have just described. Their positions relative to the solve command are also important. For example, if a

constraint command appears after a solve command, OASIS does not write the constraint to the LP until after the solve

command has been evaluated.

A. Udef command

The udef command is used to create a new simulation variable. The variable can have any meaning that helps you write

operating rules in OCL. OASIS automatically records the value of the user-defined variable (udef) at every simulation time

step, unless you tell it not to. Therefore, the value of the udef can be reported by post-processors. You should avoid creating

udefs that you do not need, since time and disk space are consumed when OASIS records their values.

The udef can be a decision variable or a non-decision variable. If it is a decision variable, you give bounds for the udef in

the udef command. There is an upper and a lower bound, which are the maximum and minimum feasible values that the LP

router can assign to the udef. They function as constraints. You can tell OASIS that the variable is unbounded in one

direction or both directions. This means that the variable can vary as high as infinity, or as low as negative infinity (In fact,

±10 is used for these bounds in place of infinity).23

If the udef is a decision variable, you can also specify that it should be an integer. This means that the LP router can only

assign it an integer value. The most common use of this option is to create a binary variable. A binary variable is a udef that

has bounds of 0 and 1, and is an integer. Integer variables are harder for the LP router to solve, so they should be used

carefully. In particular, large numbers of integer variables can make the LP solution process very slow.

If the udef is a non-decision variable, then you assign its value with the set (section 2.5.1 part C) or run_module (section

2.5.1 part I) commands.

For complete documentation of the OCL udef command, see section 4.7.2 part B.

-40-

B. Segment command

The segment command is used to create new simulation decision variables that are segments of another decision variable.

Any decision variable can be segmented in this way. For every segment command, OASIS automatically writes a constraint

that assures that the sum of the segments is equal to the original variable.

You decide the number of segments, and you tell OASIS the upper and lower bounds of each one. You express these bounds

as the values of the original, segmented variable at each of the segment bounds. Each segment variable actually has a lower

bound of zero, and an upper bound equal to the difference between the given bounds. Unlike decision variables created with

the udef command, all variables created with the segment command must have finite bounds. Also note that the bounds on the

segments have the effect of constraining the original, segmented variable.

The segment command allows you to apply different rules to different segments of the original decision variable. For

example, you can use the target or constraint command to create a piecewise-linear function of the original variable. You

would do this by writing different coefficients to each segment. One very important application is to enter a piecewise-linear

approximation of a nonlinear function.

Unless you specifically tell it not to, OASIS automatically creates binary variables and special constraints for the segment

command. The constraints force the LP router to assign value to the segments in the proper order. These constraints and

binary variables are hidden from you unless you look in the file LP.out (section 5.5.0).

It is very important that you design the segments so that the router assigns them in the proper order. The binary variables

and their associated constraints will insure that this is so. However, it is a good idea to suppress these constraints and binary

variables whenever you can, because the binaries can significantly slow down the LP solution process. You can suppress the

binaries if your LP rules assure that the segments will always be assigned in order. Generally, this means that the LP router

gets more net points (from weights) for the first segment than the second, the second earns more than the third, and so on.

For complete documentation of the OCL segment command, see section 4.7.2 part C.

C. Set command

The set command is used to assign a value to a non-decision variable. The value that is assigned is the result of evaluating

an expression that you provide. Furthermore, you may define conditions, which allow you to vary the value according to the

state of the system using “if-then”-type logic. See section 4.7.2 part A for complete information about conditions.

Many standard input variables can be set with this command, as can any non-decision variable udef. In fact, all non-decision

variable udefs should be set with either the set command or the run_module command (section 2.5.1 part I). For standard

variables, the set command (or the run_module command) is your alternative to entering the values of the variable in a pattern

table or a time-series table. In order to set any of the standard variables with this command, you must tell OASIS that the

particular variable will be computed in OCL. For example, you can set the inflow to a node with the set command using the

OCL inflow variable. To do this, you must enter OCL into the Inflow field in the Node table in the record for the particular

node.

There are advantages and disadvantages to assigning a value with the set command. You should consider the following when

deciding how to enter an input variable:

-41-

Advantages to using the OCL set command for standard input variables:

 The value comes from an OCL expression, so it can be dependent upon other state variables that are part of the

expression.

 The conditions of the set command allow you to use “if-then”-type logic when determining the value.

 The expression for the variable’s value makes it explicit how the value was derived, while it may not be clear how

values in the database were derived. Furthermore, suppose you want to derive the values with some new method, or

based on some new parameters. With OCL you could modify your expressions and then just re-run OASIS. If your

values are stored in a database, you would have to recompute them and then enter the new values into the database

— an extra step.

Disadvantages to using the OCL set command for standard input variables:

 OASIS does not compute the value of the variable until the set command is performed. Therefore, you can never

refer to the future value of the variable (except when doing MPO, see section 2.2.7). If the value of the variable is

stored as a pattern or time series in a database, then you can always refer to the future value.

 OASIS stores every variable that is computed with the set command in time-series output, consuming time and disk

space. OASIS does not record the values of pattern or time-series input variables, because the post-processors can

read the input files to get their values.

For complete documentation of the OCL set command, see section 4.7.2 part F.

D. Constraint command

The constraint command is used to enter a user-defined operating constraint into the LP. See section 2.2.2 for an explanation

of operating constraints.

The constraint that you create must have at least one decision variable, it must be linear with respect to the decision variables,

and it must include exactly one comparison operator between decision variable terms. The comparison operators are =, <,

>, <=, and >=. The comparison operator != can not be used as the comparison operator that defines the constraint (You can

include as many comparison operators as you please, including the not-equal operator, within the coefficients). You do not

have to distribute the expression.

The constraint command can have one condition. If the condition expression evaluates true, then the constraint applies in the

LP for the time step. If the condition expression does not evaluate true, then the constraint expression does not apply in the

LP for the time step. You can enter the constraint command without a condition, in which case the constraint always applies

in the LP. See section 4.7.2 part A for complete information about conditions.

The constraint command is often used to model a physical rule or a policy that could never be violated. It is also used to

define a decision variable udef. Consider this example:

Constraint define_stor_gain :
{ dStor_gain = dStorage450 - Storage450 - Evap450 }

Constraint water_right :
{ dStor_gain < RemainingWaterRight }

The first constraint command is simply defining a decision variable udef, dStor_gain, as being equal to a combination of

other decision variables and non-decision variables. In this case, the storage gain variable, dStor_gain, is equal to the end-of-

period storage, dStorage450, a decision variable; minus the beginning-of-period storage Storage450, a non-decision variable;

minus the evaporation, Evap450, a non-decision variable.

The second constraint command models a policy that could never be violated. It says that the storage gain, dStor_gain, a

-42-

decision variable, must be less than the remaining water right, RemainingWaterRight, a non-decision variable udef. Notice

that the two constraints could be combined into one constraint command:

Constraint water_right :
{ dStorage450 - Storage450 - Evap450 < RemainingWaterRight }

However, most people would probably find the example with two constraint commands easier to read. Furthermore, there

may be uses for dStor_gain in other commands, and you may desire it to be recorded as a system performance measure.

See 4.7.2 part D for complete documentation of the constraint command.

E. Target command

The target command is used to enter a user-defined operating goal or constraint into the LP. See section 2.2.2 for an

explanation of operating constraints and section 2.2.3 for an explanation of operating goals.

The target always consists of a target expression and a target value. The target expression is a linear expression of one or

more decision variables, while the target value cannot include any decision variables. The LP router may decide to make the

target expression equal to the target value, or it may let the target expression deviate from the target. The target could deviate

in one of two ways: greater than the target value or less than the target value.

In the target command, you tell OASIS how to behave toward the two potential deviations by assigning penalties. A positive

penalty discourages deviation because the LP router loses points for deviating. A negative penalty (which is a positive

weight) encourages deviation. A zero penalty leaves the LP router indifferent toward the deviation. And furthermore, you

can put a bound on the deviation instead of a penalty. This prevents any deviation, and defines a constraint.

Since there are two potential deviations, and a different penalty can be applied in each direction, the target can be defined in

many different ways. For example, you could discourage deviation in either direction. You could discourage positive

deviation and encourage negative deviation. You could bound one deviation and discourage the other deviation. You could

discourage one deviation and have it indifferent to the other direction. Thus, the target command can define a goal, a

constraint, or a rule that is part goal, part constraint!

The target command can have many conditions. Conditions allow you to vary the target value, penalties, and priority levels

according to the state of the system, using “if-then”-type logic. See section 4.7.2 part A for complete information about

conditions. Consider that the target could be a constraint under one condition, but a goal under another condition!

The target command can do anything that the constraint command can do (except coordinate with the minimax command, see

section 2.5.1 part F). Therefore, let’s compare the differences between the two.

Target command Constraint command

Frames the rule as a target expression and a target value. Simply a constraint expression.

Can model an operating goal, operating constraint, or a

hybrid of the two.

Only models constraints.

Can have multiple conditions. Can have no more than one condition.

May be awkward for stating a constraint, since all decision

variables must be in the target expression (the left-hand side).

Straightforward. Can move terms to whichever side

of the constraint expression seems more natural.

Deviations are reported in OCL.out (section 5.3.3). No reporting in OCL.out.

For every condition in a target, you provide a priority level. Both penalties apply to the same priority level. If the penalty is

bound or indifferent (zero penalty), then the priority level is moot.

-43-

See section 4.7.2 part E for complete documentation of the target command.

F. Minimax command

The minimax command is used to enter a user-defined operating goal into the LP. See section 2.2.3 for an explanation of

operating goals.

The minimax command defines a goal of making two or more user-defined decision variable quantities equal to each other.

Usually, a shared quantity is distributed among these quantities. For example, several reservoir nodes release water for a

common delivery, and we want the amounts they release to be distributed evenly. Or, several demand nodes receive water

from a common source, and if they cannot get a full delivery, we want the shortage to be distributed evenly among them.

This is a very powerful operation for what looks like a small command. However, the minimax command never works alone.

For every instance of the minimax command, you must have:

 A udef command (section 2.5.1 part A) defining the minimax variable. It must be a decision variable, and it is

usually suitable to have an unbounded variable. The udef command does not include any special information

indicating to OASIS that this is a minimax variable. OASIS knows that it is a minimax variable because it is used in

the minimax command.

 For each of the quantities that are to be equalized together, a constraint command (section 2.5.1 part D) making the

minimax variable greater than the individual quantity. We’ll call these the minimax constraints. The

constraint command does not include any special information indicating to OASIS that this constraint is part of a

minimax operation. OASIS detects that the command contains a minimax variable, and internally it marks the

constraint for special treatment. You can not use a target command for this purpose.

In the minimax command, you specify which minimax variable to use, and a penalty and priority level for minimizing the

variable. This is a simple task — one that could easily be done with the target command. However, there is more to the

minimax than that.

Because of the penalty, the LP router tries to make the minimax variable as small as possible. However, the minimax

constraints force the minimax variable to be no less than each of the quantities to be equalized. Therefore, the smallest

possible value of the minimax variable is the largest of the quantities. Thus, as the LP router tries to minimize the minimax

variable, it is also minimizing the largest of the quantities. If all the quantities are equal, then the minimax variable is truly as

small as possible.

Now, suppose that the largest of the quantities is “hung up”. That is, this quantity is larger than the other quantities, but the

LP router can not make it any smaller because of a constraint or a goal with a higher weight than the minimax penalty. At this

point, the LP router is indifferent to the values of the smaller quantities — they have alternate optima.

Now we see why the minimax command is so powerful, doing things that can not be accomplished with the target command,

for the minimax command tells OASIS to check for minimax constraints that are “hung up”, or binding. If any are found,

OASIS temporarily rewrites them so that each binding quantity is fixed at its smallest possible value, and the minimax

variable is removed from each binding constraint. Then, the LP is solved again with the smaller set of active minimax

constraints. If any are still binding, then OASIS repeats the process until there are no binding minimax constraints left.

See section 4.7.2 part H for complete documentation of the minimax command.

G. Solve command

The solve command tells OASIS to solve the LP. If there are constraint, target, or minimax commands following a solve

command, then OASIS does not write them to the LP until after the solve command has been evaluated. A simple model does

not need the solve command, because if you do not enter one, then OASIS automatically creates one as the last OCL

command. The solve command is an advanced feature, and we don’t recommend working with it until you are comfortable

-44-

with the LP concepts in OASIS.

In the solve command, you specify a priority level to solve. See section 2.2.6 for more about priority levels. To evaluate the

solve command, OASIS solves this and all earlier priority levels that have not already been solved. The solve command can

have many conditions. The priority level and convergence criteria can vary by condition. See section 4.7.2 part A for

complete information about conditions.

One of the great advantages of the solve command is that it allows you to evaluate information after the LP has been solved.

For example, suppose there is a complicated water quality parameter that you are modeling with OCL (not with OASIS’s

standard water quality abilities). In order to compute the parameter, you need to know the flow in an arc. Since the flow is a

decision variable, you can not compute the parameter until after the LP has been solved.

The solve command also allows you to modify the LP in between priority levels. Consider this example:

Solve : { priority : 1 }

constraint DELTA_XS_FLAG :
{ Dxs_flag = (flow140.999 > (min_flow140.999 + .1)) }

Solve : { priority : 2 }

In the example, a new constraint is added after priority 1 has been solved. Thus, a constraint can depend upon the results of

an LP solve. In this case, the variable flow140.999 was determined by the LP solve.

With the solve command, you can re-solve any priority level that has already been solved. You can also solve iteratively,

which means OASIS automatically re-solves again and again until certain criteria have been met. An iterative solve command

must be matched with an :ITERATE: marker. Each time OASIS does another solve iteration, it backtracks to re-evaluate all

the commands that follow the matching :ITERATE: marker. The commands that come between the :ITERATE: marker and

the solve command should change the LP in some way so that the LP router converges upon the desired solution.

The solve command is used when an operating rule is too difficult to handle within a pure LP framework. You should be

aware that the LP solution process can consume a lot of time on a large system, so it is advantageous to avoid excessive LP

solves.

See section 4.7.2 part I for complete documentation of the solve command.

H. Cancel command

The cancel command tells OASIS to cancel the results of a previously solved priority level. This command can only be

issued after a solve command. The results (the solved decision variables) of the priority level that is canceled remain in

memory until the next solve command is evaluated, and you can apply them as you like. However, the succeeding priority

levels are no longer constrained to the alternate optima of the priority level that was canceled. See section 2.2.6 for more

about priority levels.

In the cancel command, you specify a single priority level to cancel. OASIS cancels only that one priority level. The cancel

command can have many conditions. The priority level can vary by condition. See section 4.7.2 part A for complete

information about conditions.

The cancel command is certainly an advanced feature that most modelers will not need to use. However, it comes in handy

when you want the LP router to provide a “what-if” answer. You can create a priority level which contains goals that do not

exactly reflect the true operation of the system. For some reason, it is important to know what the system would do if those

particular goals (and not others) were driving the system. After issuing a solve command for the “what-if” priority level, you

can apply the results, issue the cancel command, and then proceed to write and solve the priority levels that reflect the true

operation.

See section 4.7.2 part J for complete documentation of the cancel command.

-45-

I. Run_module command

The run_module command tells OASIS to pass data to another program, called an external module, then to wait for that

program to execute and pass information back. This allows OASIS to run in parallel with another model.

OCL is a language specialized for giving instructions to OASIS’s LP router. It is not a fully featured procedural language,

like FORTRAN or C++. You can do many things with OCL, but there are some tasks that are not appropriate. Therefore, if

you wish to add iterative loops or specialized input and output to your water resources model, you may want to use an

external module. The external module can act as a new function or subroutine that you write in the computer language of

your choice, and plug right in to OASIS.

The external module can also be a complete, previously existing program — a model of stream temperature or groundwater

flow, for example. Before such a program can work as an external module for OASIS, there have to be some changes to the

code of the program, so that it can “talk” to OASIS. These changes are fairly minor, and HydroLogics staff are experienced

with the process. The external module is compiled into a DLL file (Dynamic Link Library). A DLL contains functions

residing in a library file. Any Windows program can call the functions in this file. When OASIS calls an external module in

a DLL, it is just like calling a new subroutine within OASIS.

Every run_module command must refer to a module declared with the :MODULE: meta-command (section 4.7.1 part G).

The :MODULE: command tells OASIS the exact pathname of the external module, and declares a shorthand name for the

module. The run_module command uses this name so that OASIS knows which external module to call. You can call the

same module more than once.

Note that the run_module command does not have conditions. OASIS calls the external module once for every use of the

run_module command, every simulation time step.

The run_module command contains a list of input arguments and a list of output arguments. The input arguments are values

that OASIS passes to the external module. The list of output arguments contains non-decision variables whose values are

assigned by the external module. The output list cannot contain variables that cannot be assigned with the OCL set command

(section 2.5.1 part C).

It is possible to tell OASIS to process the module in its own execution thread. This is most useful when you have multiple

external modules which consume lots of run time. By running each module in its own thread, you can save run time on a

multiprocessor or multicore computer.

See section 4.7.2 part G for complete documentation of the run_module command.

2.5.2 RETURN FLOW FROM A DEMAND NODE

OASIS assumes that all water delivered to a demand node ((section 2.4.0 part D)) leaves the system. Thus, a demand node is

assumed to have no return flow . You can model return flow at a demand node, but OASIS has no standard rules to compute

it. This only means that you must use OCL. You must apply some kind of rules to the return flow, because it is not included

in the continuity-of-flow constraint (section 2.2.4) at a demand node. Without constraints, the LP router might give some

very unrealistic simulation results.

To model return flow, simply create as many return-flow arcs as you need coming from your demand node. See section 2.1.2

for more about arcs. You do not need to tell OASIS that these are return-flow arcs – it figures that out itself. You can apply

any rules to the return flow that you wish. However, the simplest and most common type of return-flow rule uses the

constraint command (section 2.5.1 part D) to force the return flow to be a function of the delivery (a linear function, since the

delivery is a decision variable). For example, the constraint says that the return flow is equal to 100% of the delivery:

CONSTRAINT : { dFlow300.111 + dFlow300.115 = dDelivery300 }

The example has two return-flow arcs, 300.111 and 300.115. The above example would keep 100% of the flow in the

-46-

system, just like the continuity-of-flow constraint at a junction node. However, you can just as easily tell OASIS that only

30% of the delivery returns to the system:

CONSTRAINT : { dFlow300.111 + dFlow300.115 = 0.3 * dDelivery300 }

Changing the above factor from 0.3 to 1.3, would make the return flow equal to 130% of the delivery. Thus, water would

actually be added to the system. Although this is legal input, it would be an unusual situation to model.

You could make a piecewise-linear function for the return flow. To do this, you would first need to segment the dDelivery

variable with the segment command (section 2.5.1 part B), then use the constraint command to make the return flow a

function of the segments.

You can write constraints such that the return flow is a function of the previous period’s delivery. You can write constraints

so that the return flow is a function of some other variable, and not a function of the delivery at all. The possibilities are

endless.

2.6.0 OUTPUT

OASIS is designed so that you can analyze any model result thorough output. Several output files can be generated, and each

answers a specific need. Most of the output files are optional. You control how they are written by your entries in the control

file (section 4.4.0).

Normally, you should rely upon post-processors (section 2.7.0) to analyze model results. However, the output files are handy

when there is an error, or when there is some question about whether an operating rule is being modeled correctly.

OASIS writes the following output files:

 Debug output (debug.out in the run directory). When an error or warning occurs, OASIS writes a message in this

ASCII file. Usually this message is the same one that appears in the error box on the screen. However, sometimes

there is more detailed information in the debug file. You cannot change the way this file is written. See section

5.1.0 for more information about this file.

 Balance sheet output (balance.out in the run directory) is very useful when you need to carefully track where the

simulated water is going. The balance sheet is an ASCII file containing a report of every inflow and outflow, for

every node in the system, for every time step of simulation. Notice that all of this information is also being written to

time-series (HEC-DSS) output, and is therefore available to the post-processors. However; the balance sheet

presents the information in a different, comprehensive format that you may find useful. The balance sheet also

reports special information such as minimum flows, maximum flows, deliveries, shortages, evaporation, elevation,

and water quality. You can turn the balance output on or off with a flag in the control file (section 4.4.0).

Furthermore, you can customize the format and content of the balance sheet. See section 5.2.0 for more information

about this file.

 LP output (LP.out in the run directory) is an ASCII file generated by XA, the proprietary LP solver that is called by

OASIS. For every time step and at every priority level, XA writes an algebraic representation of the constraints,

bounds, and objective function that comprise the LP. It then writes the solution of the LP. This information is rarely

needed, not to mention that it is very redundant and somewhat difficult to read. In addition, it slows OASIS down

perhaps more than any other option available to you. Therefore, it is usually best to turn this output off. You control

whether this output is written with a flag in the control file (section 4.4.0). See section 5.5.0 for more information

about this file.

 OCL output (OCL.out in the run directory) is an ASCII file containing reports on the evaluation of OCL commands.

There are two different reports that can be written to this file. The first is a report of the results of evaluating the

OCL expressions. This report also tells you which condition was found to be true for each command. The second

report tells you the results of your OCL-defined goals. This includes a summary of the deviations on each target

command. You control what is written to this file with a flag in the control file (section 4.4.0). See section 5.3.0 for

-47-

more information about this file.

 Weight output (weight.out in the run directory) is an ASCII file containing a report of every weight that goes into

the LP router. See section 5.4.0 for more information about this file.

 Time-series output (filename and path given in the control file) is a HEC-DSS file designed to be read by the post-

processor programs. It contains the value of every simulation variable that is not given directly in the input files.

For example, a minimum flow given in time-series input does not need to be saved in output, because the post-

processors can retrieve its value from the input files. A minimum flow given in OCL does need to be recorded in

output, because the post-processor does not re-evaluate the OCL commands. All decision variables are recorded in

this file. You can tell OASIS not to write certain variables to this file, saving time and disk space. You can retrieve

results directly from this file using HEC-DSS utility programs. These utilities contain extensive analytical tools that

you may find useful. We recommend you work with the OASIS post-processors (Chapter 6) rather than access the

HEC-DSS databases directly. You can turn this file on or off with a flag in the control file (section 4.4.0). Only in

rare cases would you turn it off. See section 5.6.0 for more information about this file.

2.7.0 POST-PROCESSING

OASIS stores all simulation results in a single time-series database (section 5.6.0). If you prefer, you can retrieve results

directly from this database. However, it is generally most convenient to use OASIS post-processor programs. Onevar

(section 6.1.0) is the OASIS post-processor which presents values in text tables. Plot (section 6.2.0) is the OASIS post-

processor that presents results in graphical X-Y plots. Both of these programs are designed so that you have complete control

over the format and content of the presentation. You can easily load the post-processor report into a spreadsheet or other

software for analysis.

You give instructions to the post-processors in input files specifically designed for the post-processors. The post-processor

commands are an extension of OCL. Because you write OCL expressions (section 4.7.3) for the post-processor content, you

can report a single variable, or a complicated formula of many variables. All OASIS input and output variables are available

to the post-processor.

The post-processor input files can be stored as libraries of model outputs sets that you can quickly generate and view. The

OASIS GUI makes it easy to run the post-processor programs with these stored post-processor input files. The GUI also

contains the helpful Quick View feature (section 3.6.4 part I) that makes it easy to get model output from a new post-

processor input file. With Quick View, you design the new post-processor input through a friendly interface.

See Chapter 6 for complete documentation of post-processor programs.

2.8.0 TIME IN THE SIMULATION

OASIS was designed to be very flexible in handling time. You can choose the sizes of the time steps; the start and end times

of the simulation are user-defined; and you can define the year so that it starts at an irregular time, such as October 1 for a

water year.

2.8.1 TIME STEPS AND THE TIME CYCLE

OASIS allows you to choose any size of time step that you wish (except OASIS will not allow time steps that are smaller than

5 minutes or larger than 1 year). Furthermore, the size of the time step can vary from one step to the next. There are three

basic ways to specify the time step:

 Pre-defined step types: for backwards compatibility, OASIS allows you to name one of the three different time-step

sizes that were available before version 3.0. The pre-defined types are DAILY , WEEKLY , and MONTHLY . A

fourth pre-defined step type, ANNUAL, is available for post-processing but not for simulation time steps. When you

specify one of these types, OASIS automatically generates the appropriate time-step cycle information.

-48-

 Steps in a Cycle: this is the most general way to define time steps. The cycle is a series of steps that continuously

repeats from the beginning of the simulation until the end. Each step within the cycle may have a different length

than the others, but a step at a given position in the cycle has the same length from cycle to cycle. The cycle may

have two different forms:

- Cycle fixed to the year. The length of the cycle is one year. A given step in the cycle begins at exactly the same

day of the year, every year. During leap year, the step that includes leap day is one day longer than it is in non-leap

years. This type of cycle cannot have steps that are less than one day long or steps that include a partial day. The

pre-defined MONTHLY step type is a classic example of a time-step cycle that is fixed to the year. The cycle of a

MONTHLY scheme consists of 12 steps.

- Cycle not fixed to the year. The cycle can have any length. During leap year, none of the steps change in length.

The first step of the simulation is always the first step of the cycle. The pre-defined WEEKLY and DAILY steps

types are examples that follow this type of cycle. Both the DAILY and WEEKLY cycles consist of only 1 step each.

The weekly time step nicely illustrates what it means that the cycle is not fixed to the year, since if a year begins on

Sunday, the next year usually begins on Monday (and the next on Tuesday and so forth).

 Steps defined by a DSS record. The end times of the simulation time steps are determined by the end times of the

time steps in a user-specified DSS record. This gives you complete freedom to choose an irregular combination of

time steps. This is a special case designed to handle those steps which do not fit into the cycle format.

Ideally, when you change the time step scheme, you do not have to change your system input. When OASIS reads pattern and

time-series input, it internally converts the data to the time steps that it needs. This is so you do not have to duplicate input

development or keep track of separate sets of input files. However, you would be well advised to check the assumptions

when attempting to switch time-step sizes. For example, pattern variables in a monthly simulation might have been developed

with simplifications that would not be appropriate to a daily simulation.

To use one of the pre-defined time-step sizes, open the Run table in the time-parameters database (section 4.5.2 part B).
In the time step field, enter DAILY, WEEKLY, or MONTHLY. Remember that OASIS ignores the Steps table when you use
the pre-defined time-step sizes, but it does use the entry in the Year Scheme table (section 4.5.2 part C) to determine the first
day of a year. You can not do MPO (section 2.2.7) when using one of these pre-defined time-step sizes.

To use a time-step cycle that is fixed to the year, in the time step field in the Run table (section 4.5.2 part B), enter CYCLE.
In the Steps table (section 4.5.2 part D), enter a record for each time step in one cycle. Enter values into the month and day
fields to define the end of each time step. Do not enter anything into the Length field. Remember that OASIS ignores the
Year Scheme table when you use the Steps table in this way. It determines the beginning of the year as the beginning of the
first time step in the cycle.

To use a time-step cycle that is not fixed to the year, in the time step field in the Run table (section 4.5.2 part B), enter
CYCLE. In the Steps table (section 4.5.2 part D), enter a record for each time step in one cycle. Enter values into the Length
fields to define the end of each time step. Do not enter anything into the Month and Day fields. When you use the Steps
table in this way, OASIS uses the Year Scheme table to determine the first day of the year (section 4.5.2 part C).

To use a time-step cycle that is defined by a DSS record, in the time step field in the Run table (section 4.5.2 part B), enter
DSS. This tells OASIS that the lengths and end-times of the time steps are the same as the steps in a DSS record. Specify
which record with the DSS Steps table (section 4.5.2 part E). OASIS still uses the Steps table (section 4.5.2 part D) to
determine labels and MPO information. However, do not enter anything into the Length, Month, or Day fields of the Steps
table. When you use the Steps table in this way, OASIS uses the Year Scheme table (section 4.5.2 part C) to determine the
first day of the year.

Time steps are always identified by the time on which they end. For example, a week is always identified by the seventh day,

and months are always identified by the last day of the month.

-49-

Some time-step systems use time steps that are not of uniform length. For example, when using the pre-defined MONTHLY

time-step scheme, the months are of different lengths: 28, 29, 30, or 31 days. This causes a problem when converting from

flow units to volume units per period, since the conversion factor varies with the length of the time step. OASIS always uses

the exact length of the step for its conversions. Correspondingly, the OCL convert_units function (section 4.7.6 part C) is

aware of the varying time-step lengths and does the appropriate conversion.

2.8.2 START AND END

You tell OASIS at exactly what time steps to start and end the simulation. Since a time step is always labeled by the time at

the end of the time step, you enter the time at the end of the first time step and the time at the end of the last time step.

To change or view the starting and ending time steps, open the Range table in the time-parameters database (section
4.5.2 part A). The identities of the records (rows) in this table are fixed, and you cannot change their order. The starting time
step is entered in the first record, and the ending time step is entered in the second record.

The starting and ending time steps are independent of the year scheme (e.g. water year or regular calendar). For example, it is

perfectly legal to be using a water year, but start the simulation in February and end it in July. In other words, just because

the year begins in October does not mean the simulation has to start in October.

If your time steps are fixed to the year, then OASIS starts the simulation with the first cycle step that ends on or after the time

that you enter as the start time. Thus, OASIS corrects the start time for you, if what you entered does not coincide with the

fixed end time of a step. Also, it is possible to start the simulation in the middle of the time-step cycle.

If your time steps are not fixed to the year, then OASIS always starts the simulation with the first cycle step. It is not possible

to start the simulation in the middle of the time-step cycle.

If the end time that you enter does not coincide with the end time of a time step, then OASIS chooses the first time step that

ends after the time that you entered. The simulation does not have to end on the last step of the time-step cycle.

2.8.3 CONTINUATION MODE

You can tell OASIS to start from the middle of a simulation run that has already been run. This is known as continuation

mode. The time step at which you start the new run is the continuation point. To run in continuation mode, the run must

already have been completed up to the time step before the continuation point. If some or all of the run was already

completed after the continuation point, then OASIS overwrites the old results that come after the continuation point. The

results that come before the continuation point are always preserved. The post-processor programs are unaware of the

continuation point, and treat all the output as uninterrupted series.

To run in continuation mode, open the Range table in the time-parameters database (section 4.5.2 part A). The identities
of the records (rows) in this table are fixed, and you cannot change their order. Enter the time of the continuation point in the
fourth record.

As long as the time given in the fourth record falls between the start time and the end time (section 2.8.2), OASIS runs in
continuation mode. To do a normal run, change the value in the fourth record to a time that comes before the start time..

Continuation mode is primarily used when debugging. If OASIS stops with an error, you could change the input, then re-run

in continuation mode to see if the error was fixed. Continuation mode is most useful when run times are long. If your run

time is short, then it is unlikely you would need to use continuation mode.

When initializing a continuation run, OASIS reads the time-series output file (section 5.6.0) to get the proper initial

conditions. However, if your external modules (section 2.5.1 part I) have not been programmed to handle continuation mode,

they might not use the correct initial values and time coordinates.

-50-

2.8.4 LEAP YEAR

OASIS always accounts for leap years. In pattern input, if you enter February 28 followed by March 1, OASIS assumes that

February 29 has the same value as February 28. The algorithm for determining leap year is:

 The year is not a leap year; except

 if the year number is divisible by 4, the year is a leap year; except

 if the year number is divisible by 100, the year is not a leap year; except

 if the year number is divisible by 400, the year is a leap year.

In pattern input (section 4.5.1), OASIS checks whether you have entered a value for February 29. If you have entered a value

for February 28 and a value for March 1, but no value for February 29, then OASIS assumes that you have forgotten about the

existence of leap day. It then makes some assumptions for you (section 4.5.1 part B). If you do not agree with these

assumptions, you should explicitly enter a value for February 29 whenever you enter a value for February 28.

2.8.5 YEAR SCHEME

For most situations, we think of the year as beginning on January 1. However, due to cycles of wet and dry seasons, many

hydrologists find it more convenient to work with a year that begins October 1 and ends September 30, known as the water

year. Furthermore, there are many instances of water delivery contracts that begin accounting at some time other than

January 1.

The way in which a year is defined is important for analysis, because it is common to look at annual summaries of data.

Therefore, OASIS gives you the flexibility to choose the date that you want for the start of the year. The date on which your

year begins defines your year scheme.

Using a year scheme other than the January 1 year scheme brings a few complications to the labeling of dates. OASIS

observes the following rules:

 When using a special year scheme, the year number of a year is always the same as the year number of the regular-

calendar year in which it ends. For example, the water year is a special year scheme, beginning on October 1 and

ending on September 30. Therefore, September 1950 in the regular-calendar year is labeled September 1950 in the

water year. However, October 1950 in the regular-calendar year becomes October 1951 of the water year.

 Unlike OASIS, HEC-DSS (section 4.6.1) will not handle special year schemes. In HEC-DSS, dates must always be

labeled according to the regular calendar. For example, October of water year 1951 must always be labeled October

1950 in DSS. OASIS recognizes this problem and knows how to convert from the year scheme in DSS to the year

scheme of simulation.

 OASIS does not change the month numbers or the day numbers of the month when handling special year schemes.

These numbers always reflect the identity of the date under the regular calendar. For example, suppose that you are

using a year scheme that begins on March 15. Under this scheme (or any other), the date 1/1 is still January 1 of the

regular calendar, and 6/30 is still June 30 of the regular calendar.

The year scheme is independent of starting and ending times of simulation. For example, the year might start in October, but

you are free to start your simulation in January or any other time.

Using the :STEP: field in the Onevar header (section 6.1.7 part I), it is possible to generate post-processor output that uses a

different year scheme than the simulation. For example, you may simulate on a water-year basis, but you might wish to see

certain variables averaged or totaled over a contract year that begins March 1.

-51-

To set the year scheme:

 If you are using a time-step cycle that is fixed to the year (section 2.8.1), then the year scheme is defined by the
entries in the Steps table (section 4.5.2 part D). Each step in the cycle is identified by the date on which it ends.
Thus, the last day of the year is the date identified with the last step. The first day of the year is not directly given in
this table, but clearly it is the day following the last day of the year. If you need to change the year scheme, re-order
the steps in this table.

 If you are any other time-step scheme, then the year scheme is defined by the entry in the Year Scheme field of the
Year scheme table (section 4.5.2 part C). The entry must be the name of a month. The first day of the year is the
first day of the given month.

When you switch to a new year scheme, it is possible that your pattern tables are not ready for the change. Every pattern
table must have an entry for the first and last day of the year.

You may want to check your OCL rules, to see that none of them carry the wrong assumption about the beginning of the year.

-52-

2.9.0 UNITS OF MEASUREMENT

All measurement units for flow rate, volume, and elevation are user-defined, so you are perfectly free to work in metric,

English, or ancient Egyptian units -- or any hybrid system you like. You only need to tell OASIS the names of the units and

how to convert between them. This information is specified in the Units table in the system database (section 4.5.3 part A).

The best way to view or edit the units information is through the Units Wizard in the OASIS GUI (section 3.7.7). The units

for measuring water quality parameters are specified in the Concentration table (section 4.5.3 part D).

If the Units table is omitted, then OASIS relies on a default system of units, where volumes are measured in acre-feet (AF)

and the flow rate units are cubic feet per second (CFS). This default system assures compatibility with earlier versions of

OASIS that did not have user-defined units. The default units are displayed in the example in section 4.5.3 part A.

In the Units table, you identify primary units and alternate units that can be used for each units category. Primary units

are the units in which OASIS works. Internally, all values are measured in primary units. If any input values are supplied

in alternate units, OASIS converts them to the primary units for internal storage. The primary units are the default

measurement for output values.

OASIS tries to convert the measurement units of values that it reads from DSS. This means that you should always use the

UNITS field in the DSS records (section 4.6.1).

A. Volume units

The dimensions of these units are volume, or cubic length. Internally, all volumes are measured in the primary volume

units, and all flows are measured in primary volume units per time step. Therefore, you can assume that all flow and volume

values are measured in primary volume units in:

 OCL expressions

 DSS output

 Balance sheet output

 LP output

B. Big volume units

The dimensions of these units are volume, or cubic length. The big volume units are automatically treated as alternate units

for volume units, and as OASIS reads input, it converts values entered in big volume units into volume units. This units

category was created because it is sometimes more convenient to measure reservoir volumes in larger units than one would

use to measure flows. It is perfectly legal for volume units and big volume units to be identical. If the units of the input are

not labeled, the database input for reservoir storage values is assumed to be measured in the primary big volume units,

though it is highly recommended that you always label your units. The reference for each input table tells what the default

units assumptions are.

C. Flow rate units.

The dimensions of these units are a volume (cubic length) over a time interval of constant size (a month does not have

constant size, but a week, day, hour, or second does). Flow rate units are useful because they are independent of time step

size. Furthermore, it is customary for engineers to use different units when talking about volumes and flows. For example, in

the United States, many engineers use CFS to describe flow rates, and AF to describe volumes. The database input for arc

flows is assumed to be measured in the primary flow units if the units of the input are not labeled, though it is highly

recommended that you always label your units. The reference for each input table tells what the default units assumptions are.

-53-

D. Reservoir Surface Area units

The dimensions of these units are area, or squared length. The surface area of a reservoir is measured in the primary area

units.

E. Elevation units

The dimensions of these units are length. Internally, OASIS measures all reservoir elevations and evaporation rates in the

primary elevation units. Reservoir elevation is always displayed in the primary elevation units.

F. Evaporation units

The dimensions of these units are length. The evaporation units are automatically treated as alternates for the elevation units,

and as OASIS reads input, it converts values entered in evaporation units into primary elevation units. These units are

available because it is common to measure evaporation rate in smaller units than reservoir elevations. It is legal for the

elevation units to be identical with the evaporation units.

-54-

2.10.0 WATER QUALITY

Although it is foremost a water quantity model, OASIS also has the ability to compute the concentrations of different water

quality constituents. You can define between zero and three different constituents in the system database. Each constituent is

independently modeled. The constituents are all assumed to be conservative, and all concentrations are computed by

assuming perfect mixing at every node. You may be able to simulate a non-conservative constituent through your boundary

conditions.

In each time step, OASIS computes water quality after all water quantity values have been solved by the LP router.

Concentration can not be used as a decision variable. In general, the perfect-mixing equation is nonlinear with respect to

flow, so the constraints or operating goals cannot be written with concentration. To work around this, you might be able to

assume a constant value for certain flows. It may also be possible to use the solve command in an iterative manner to simulate

a water quality rule.

Concentration is controlled by the flows and the concentration boundary conditions. There are different types of boundary

conditions, but all types require concentration input, which are known values for the boundary conditions.

The water quality algorithm is a simple process that you could easily – if tediously – do by hand. With all flows known, it

starts at the most upstream nodes, and carries the results of perfect mixing to all the downstream nodes. Boundary conditions

may change or override the concentration that results from perfect mixing.

Concentration is computed and recorded at nodes. It is not recorded at arcs. By default, the concentration in any arc is equal

to the concentration in the node that the arc leaves. However, you may also specify boundary conditions at arcs.

OASIS handles water quality in a very simple fashion, so if your water quality problems are at all complicated — particularly

if you can’t assume perfect mixing — then you may have to go beyond OASIS. OASIS is flexible enough that it can do some

of the water quality computation, while the more complex parts are handled by an external module (section 2.5.1 part I). Or

you may not find OASIS’s water quality abilities to be of any use. In this case, it is still easy to let OASIS handle all water

quantity problems, while an external module handles all water quality problems.

To model a new water quality constituent, add a record for your new constituent in the Concentration table (section 4.5.3
part D). Here you give a name and number which are very important — they are be used elsewhere to identify the
constituent. You must also provide the name of the units for measuring the concentration of the constituent.

If they do not already exist, you will have to create three new fields for this constituent in the Node table (section 4.5.3 part B).
These three fields all begin with Cx, where x is the number of the constituent from the Concentration table. In these fields,
you will provide boundary conditions (section 2.10.1) at nodes for this constituent, you provide reference to the concentration
input values, and you can suppress the output for this constituent (see section 2.10.3).

If they do not already exist, you will have to create two new fields for this constituent in the Arc table (section 4.5.3 part C).
These fields both begin with Cx, where x is the number of the constituent from the Concentration table. In these fields, you
will provide boundary conditions (section 2.10.1) at arcs for this constituent, and you provide reference to the concentration
input values.

If it does not already exist, you will have to create a new field for this constituent in the Initial Conditions table (section 4.5.6).
This field begins with Cx, where x is the number of the constituent from the Concentration table. In this field, you provide the
initial concentration at each reservoir node (see section 2.10.2).

There must be a Conc Assumption field in the Reservoir table (section 4.5.3 part H). There is only one field for the
concentration assumption, which applies the same to all water quality constituents (see section 2.10.2).

If you are storing concentration input for this constituent in pattern tables, then there must be a Cx Pattern table in the inflow
database (section 4.5.5 part B).

-55-

2.10.1 WATER QUALITY BOUNDARY CONDITIONS

Each constituent has its own boundary conditions, and is not affected by the boundary conditions of the other constituents. At

any point where a boundary condition is needed but none is given, OASIS assumes that the concentration is zero.

Generally, when a boundary condition is specified on an arc, OASIS tries to preserve the balance of mass and keep the mass

in the system. When a boundary condition is specified on a node, OASIS may ignore the balance of mass or let the mass

leave the system. For each of the individual boundary condition types below, an exact description is given how each one

works for a node and for an arc.

Boundary conditions are given in the Node and Arc tables (section 4.5.3 part B and 4.5.3 part C). Only one type of boundary

condition can be specified at any node or arc. The boundary conditions can be used in the following ways:

 The concentration input can be the known value for concentration in the node or arc. This code for this option is

either NODE or ARC.

At a node: the boundary condition sets the concentration at the node, regardless of the balance of mass of the

constituent from upstream. OASIS does not compute the upstream concentrations in order to satisfy the boundary

condition, but simply lets the balance of mass be violated between this node and upstream points.

At an arc: the boundary condition sets the concentration in the arc, regardless of the balance of mass of the

constituent from upstream. If there are other arcs leaving the upstream node that do not have boundary conditions,

then OASIS tries to preserve the balance of mass among arcs leaving this node by distributing the constituent in the

arcs without boundary conditions. If there are no arcs leaving the upstream node that do not have boundary

conditions, then OASIS simply lets the balance of mass be violated between the upstream node and the arcs that

leave it. If the upstream node is a reservoir node, then the preservation of mass is guaranteed because the mass of

the constituent that did not flow out through the arcs remains in the reservoir node.

 The concentration input can be the known value of the concentration in the inflow to a node. The code for this

option is INFLOW , and obviously it can only be applied to nodes. This boundary condition is not capable of

violating the balance of mass of the constituent. If there is an inflow to a node, but this type of boundary condition is

not supplied at the node, then the concentration of the constituent in the inflow is assumed to be zero.

 The concentration input can be the fraction of the constituent that is removed from the node or arc. The code for

this option is TREAT. If the value of the concentration input is negative, then the “negative removal” means the

boundary condition increases the concentration of the constituent at the node or arc.

At a node: All arcs that leave a node with this boundary condition have the same concentration. The mass of the

constituent that is removed is removed from the system.

At an arc: If there are other arcs leaving the upstream node that do not have boundary conditions, then OASIS tries

to preserve the balance of mass and keep the mass of the constituent that came into the node in the system. It does

this by adjusting the concentration in the arcs that do not have boundary conditions (they will all have the same

concentration). This can be used to simulate reverse osmosis or evaporation. If there are no arcs leaving the

upstream node that do not have boundary conditions, then the mass of the constituent that is removed is removed

from the system. If the upstream node is a reservoir node, then the preservation of mass is guaranteed because the

mass of the constituent that did not flow out through the arcs remains in the reservoir node.

 The concentration input can be a value to add to the concentration at the node or arc. The code for this option is

ADD . If the value of the concentration input is negative, then the boundary condition is subtracting a value from the

concentration at the node or arc. This option works the same way as the TREAT option, it just computes a new

concentration by addition instead of multiplication. See the description of the TREAT option just above for more

details.

-56-

To add or change a boundary condition at a node, find the record for the node in the Node table (section 4.5.3 part B).
You will edit the fields whose names begin with Cx, where x is the number of the constituent from the Concentration table. In
the Cx_type field, you specify the type of boundary condition (one of the types described above). In the Cx_type field, you
specify the source of the concentration input that is used for this boundary condition. Depending upon the code in the
Cx_field, you will need to enter the concentration input in a pattern table, a time-series table, or in OCL.

To add or change a boundary condition at an arc, find the record for the node in the Arc table (section 4.5.3 part C). You
will edit the fields whose names begin with Cx, where x is the number of the constituent from the Concentration table. In the
Cx_type field, you specify the type of boundary condition (one of the types described above). In the Cx_type field, you specify
the source of the concentration input that is used for this boundary condition. Depending upon the code in the Cx_field, you
will need to enter the concentration input in a pattern table, a time-series table, or in OCL.

2.10.2 WATER QUALITY AT RESERVOIR NODES

Just as reservoir nodes have beginning-of-period and end-of-period storage values, they also have beginning-of-period and

end-of-period concentration values for each water quality constituent. You must supply initial conditions, the concentrations

of each constituent in each reservoir node at the beginning of the first time step of simulation. This information is given in the

Initial Conditions table (section 4.5.6).

Please note that OASIS is only designed to model reservoirs as being uniformly mixed. If you need better assumptions for

your water quality simulation, you may need to create special rules with OCL or use an external module. OASIS’s water

quality abilities may not even be useful for you at all.

The algorithm for computing concentration is very simple. It begins with the upstream nodes and works its way downstream,

computing the concentration at each node with the perfect mixing assumption. Sometimes a model may experience water that

follows a circular route (This is somewhat uncommon. It can occur when there is recycling of water). The circular route can

cause problems for the water quality algorithm, because every node in the circular path is upstream of every other node! If

you have circular flows, you can modify the assumption at reservoir nodes in order to break the circle.

Every reservoir node must use one of two water quality computation methods:

 Outflow concentration equals concentration in the reservoir at the beginning of the time step. The ending

concentration in the reservoir is computed by perfectly mixing the starting storage minus the outflow with the inflow.

This assumption is fine if the storage in the reservoir is very large compared to the flow through the reservoir. It is a

very poor assumption if the flow through the reservoir is larger than the storage. This option is useful for preventing

“vicious circles” in the water quality computation.

 Outflow concentration equals concentration in the reservoir at the end of the time step. The ending

concentration is computed by perfectly mixing the starting storage with the inflow. This option is more robust than

the other option, but it does not help break “vicious circles”.

You tell OASIS which assumption to use at each reservoir in the Reservoir table (section 4.5.3 part H). The same assumption

is applied for every water quality constituent. We recommend you use the end-of-time-step assumption, unless you need to

overcome a circular flow problem.

To change the water quality computational method at a reservoir node, find the record for the reservoir node in the
Reservoir table (section 4.5.3 part H). The computational method is specified in the Conc Assumption field.

-57-

2.10.3 WATER QUALITY OUTPUT

Each water quality constituent can increase the amount of DSS output that OASIS must write by a very large amount.

Furthermore, writing to DSS is one of OASIS’s slowest tasks. This is why water quality output is never written for arcs.

Furthermore, it is recommended that you suppress the output at every node where you do not need to see the output.

To suppress or enable water quality output at a node, find the record for the node in the Node table (section 4.5.3 part B).
There is a field that flags whether the output is written for this constituent at each node. The name of the field is Cx_output,
where x is the number of the constituent. If the field contains NO, then no output is written for this constituent at this node. If
the field is blank or Yes, then output is written.

-58-

CHAPTER 3
REFERENCE: GRAPHICAL USER INTERFACE

3.0.0 INTRODUCTION

The OASIS graphical user interface, or GUI, makes OASIS user-friendly by using windows and controls for entering input,

running the simulation, and displaying output. The OASIS package actually consists of several computer programs. Almost

all of the work of actually simulating a system is done by Model.exe and PosAnalysis.exe. Almost all of the work of

retrieving, processing, and displaying output is done by Onevar.exe and Plot.exe, the post-processor programs. These

programs can be run independently of the GUI, which is represented by GUI.exe. The role of the GUI is to provide a

convenient interface for controlling Model.exe, PosAnalysis.exe, Onevar.exe, and Plot.exe.

We believe that few users will find any reason to run OASIS outside of the GUI. There may be special situations where you

might enter data outside of the GUI program, but in general, we strongly recommend that you stay inside the GUI framework

as much as possible. The GUI carefully tracks the status of a run, and making changes outside the GUI may cause confusion

in that process.

The very purpose of the GUI is to be easy to understand and easy to use. We expect most users to be able to use the GUI with

minimal reference to the user manual. We recommend that you skim this chapter to be aware of what's in it, and refer to it

when you have a problem.

3.1.0 INSTALLATION

We have created an installation package which automatically handles the complex tasks of installing OASIS for you. This

installation package installs all files necessary for the OASIS package, including the following:

 OASIS GUI program

 OASIS model.exe

 OASIS post-processor programs

 Third-party software, including XA and Quinn-Curtis libraries, VEDIT, and HEC-DSS utilities.

 Library files that go into the Windows system folders

 Auxiliary software (such as forecast.exe) that vary by project

 Control files

 Input describing model runs – varies by project

 Post-processor input – varies by project

 An Adobe Acrobat (PDF) version of the OASIS user manual

 model output – for some projects

(Installing the OASIS package is not as simple as copying a few files to your hard drive, because the programs rely on library

files (such as files with the DLL filename extension) which must be put into the Windows system folder and registered. These

tasks are handled automatically by the installer program)

OASIS may be installed by the following steps:

Please note that the names indicated by the installer my be customized, for example "OASIS" may be replaced by

"Duck River OASIS", "Roanoke River Basin Reservoir Operations Model", "OASIS Lite", or other project-specific

name. Here we will simply cite the general name, "OASIS".

The installer program may automatically skip steps such as installing VEDIT or HEC-DSS if the necessary

installation files are not present.

A. Close any programs that are running, then Click on Setup.exe. This starts the installer.

-59-

B. The installer displays a blue screen and the dialog box that says: "Welcome to the OASIS installation program".

Click on OK.

C. The installer looks in the Windows Registry to see if VEDIT is already installed. If it does not find VEDIT, then it

will prompt you to install VEDIT. If it does find VEDIT, then it will skip to step F.

D. The installer displays a dialog box asking "Do you want to install VEDIT now?". If you click Don't install now, then

the installer skips to step F. Note that you might have an unregistered copy of VEDIT already installed, which the

installer does not detect. If you know that VEDIT is already installed on your computer, then you can safely click

Don't install now, and skip to step F.

E. Click INSTALL VEDIT NOW, and follow the prompts for VEDIT installation. These prompts are generated by the

VEDIT installer, which was originally created by Greenview Data Inc (creator of VEDIT), but customized by

HydroLogics.

When the VEDIT installer asks, "Do you want the compiler support files installed?", we recommend you click No

unless you foresee a need for those files. It is quite safe to select Skip on the prompt that asks if you want to register

VEDIT. However, registering VEDIT will allow the OASIS installer to detect VEDIT in the future. It is also

perfectly safe to select Skip on the prompts that ask whether to print or display certain documents.

F. The OASIS installer displays a dialog box titled HEC-DSS-Utility Installation. HEC-DSS is the database format of

all of OASIS's time-series input and output. You can safely skip the installation of HEC-DSS utilities by unchecking

any or all of the check boxes on this dialog box. HEC-DSS utilities are not required for OASIS to run. However, we

recommend that you install these programs so that you can edit HEC-DSS files if the need arises.

Click OK when you have made your selection.

G. The installer displays a dialog box with a large button labeled INSTALL and another button labeled Change

Directory. In the box labeled Directory is the name and path of the Home folder (section 3.3.1) where the programs

will be installed. If you wish, you may change the name or path of the home folder by clicking on Change Directory.

When the name and path of the folder are to your satisfaction, click on the large button labeled INSTALL.

H. The installer displays a dialog box labeled Choose Program Group. The program group is the folder that can be

accessed through the Windows Start menu under Programs. In most cases, you shouldn't need to change the

program group, so just click Continue.

I. At this point, the installer will take time to install the library files that are needed for the OASIS package. It is likely

that you will not be prompted for any input while this happens. First, it displays a box that says "Installing Data

Access Components". Then it displays a progress bar while it installs several library files into the Windows system

folders.

The installer next unzips several OASIS files, and then briefly a box appears that says "Updating your system".

When that is done, you should see a box that says "OASIS setup was completed successfully." Click on OK.

J. If you clicked Don't Install Now in step D, then you must manually correct an entry in the file directry.nam (section

3.3.4) before you can run the GUI. Open directry.nam using VEDIT or another text-editing program. Find the field

labeled _exe_VEDIT and modify it so that it shows the file and path of the VEDIT executable (VPW.EXE).

3.1.1 UNINSTALLATION

Instructions for uninstalling the OASIS package can be found in the file README.rtf. If you need to uninstall OASIS, please

follow the instructions in the readme file. If you merely delete the home folder, the uninstall will be incomplete.

-60-

3.1.2 COMPONENTS OF THE INSTALLATION PACKAGE

The most important components of the installation package are:

 GUI.cab: This is a compressed archive that mainly contains library files which the installer writes into the Windows

system folder. This file can be opened with WinZip or other file-compression programs.

 DCOM folder: This folder contains components that the installer uses when installing to Windows 95 or Windows

98 systems. This folder is of no value to computers that are not running Windows 95 or Windows 98.

 HEC-DSS folder: This folder contains zip files for DOS-based HEC-DSS utilities and an installer program for

HecDssVue. You may install DOS-based HEC-DSS utilities yourself by simply unzipping the files into an

appropriate folder. You may install HecDssVue by running DssVueSetup.exe.

 VEDIT folder: This folder contains the files needed to install the text-editing program VEDIT, made by Greenview

Data Inc. You can install VEDIT yourself by running the command shown below. The command must be executed

in the VEDIT folder.

 VPW.EXE -z -v -e -g -k -ixxx -crs(81,"c:\d.txt") -xoasis_installw.vdm

Then when the VEDIT installer is done running, you should copy the files listed below from the VEDIT installer

folder to the folder where VEDIT was installed on your hard drive. Overwrite any existing copies of these files.

vedit.cfg
startup.vdm
ocl.syn

Installing VEDIT manually in this way will not create a program group for VEDIT in the Windows Start menu.

 ZIP folder: This folder contains the main OASIS executables, the libraries for XA and Quinn-Curtis, the OASIS

user manual in Adobe Acrobat (PDF) format, any auxiliary executables, and all data files that are to be installed with

the project. The files are all compressed and archived in a set of ZIP files. The ZIP files and their contents vary by

project. These files are preserved here in the form from the original installation, and can be selectively

extracted from the ZIP files if needed. Extracting the files from these ZIP files is not sufficient to install OASIS

on your computer, because OASIS relies on library files which must be installed in your Windows system folders

and entered into the Windows registry.

3.2.0 VEDIT

VEDIT is text-editing software produced by Greenview Data Inc. VEDIT is very efficient and has much more powerful

features than Windows WordPad. The OASIS GUI relies on VEDIT to display ASCII files, such as OCL files and table

outputs, and make them available for editing. One of VEDIT's best features is syntax highlighting, which allows it to display

an OCL file with different types of keywords in different colors.

Like many Windows programs, VEDIT allows you to open more than one file in the same instance of the program. This

feature can be very useful when analyzing OASIS output files from different runs. If two documents are open in a VEDIT

window, you can press the F5 key to toggle between them. If you toggle quickly between two documents, the differences and

similarities in the files are readily visible.

Anyone who receives a license to use OASIS receives a license to use VEDIT. The licensing is handled by HydroLogics.

For information about installing VEDIT for use with OASIS, see section 3.1.0.

VEDIT has excellent online documentation, which you can access from the Help menu.

The GUI must be told where the VEDIT executable can be found. This is done in the _exe_VEDIT field in the file

-61-

directry.nam (section 3.3.4).

3.3.0 FILES AND DIRECTORY STRUCTURE

The files and folders needed by the OASIS GUI are automatically copied onto your hard drive by the installation process

(section 3.1.0). Although you will surely spend more time managing input and output through the GUI interface, it is useful

to have at least some familiarity with the files that are involved.

3.3.1 STANDARD DIRECTORY STRUCTURE

Although the GUI can be configured for different directory structures, we have developed standard structures that are

preferred. The preferred structure is automatically created when OASIS is installed (section 3.1.0).

The GUI is designed to handle projects that include both long-term model runs (called simulation by convention) and

position-analysis model runs. If a project does include both types of studies, the following directory structure is preferred:

If a project does not include the two different types of studies (Position Analysis and Simulation), and you are certain that you

won't ever want to include both types of studies in the project, then the preferred directory structure can be simplified as

shown:

-62-

The folders in the directory structure have the following purposes:

 Executables — This is the folder where the main executable files are stored. See section 3.3.3 for information about

the files that are kept in this folder. The folder is not shown on the directory trees above because usually it fits in one

of two situations:

 When OASIS is run on a remote server, the executables folder is on a separate computer

 When OASIS is run on your own computer (not from a remote server), the executables folder is

the same as the home folder.

 Home — This folder is often named OASIS, but it may be given a more project-specific name. For generic

purposes, we refer to it as the "home folder", for it is where the main control files are located, and it is the top-level

folder. See section 3.3.2 for information about the files that are kept in this folder. Commonly, the home folder and

the executables folder are the same folder, so the home folder also contains all of the main executables. If the home

folder and the executables folder are not the same folder, then the home folder is still the folder that the executables

run in (i.e., the current working directory).

 Basedata — This folder is not strictly required by any function of the GUI. However, it is used for most projects as

a place to keep time-series data or other data that is common to more than one run.

 Modules — This folder is not required by every project. It is used to contain extra programs and program modules

that integrate with OASIS.

 Onevar_input — Generally, this folder should only contain Onevar-input files (section 6.1.3). All Onevar-input

files that you wish to access through the GUI must be located here. If your project includes both simulation runs and

position-analysis runs, then this folder should be divided into two sub-folders, PosAnalysis and Simulation. The

PosAnalysis sub-folder must contain the file QuickViewTraceFilter.txt in order for the GUI’s Quick View feature to

be fully functional (section 3.6.4 part I).

 Plot_definitions — Generally, this folder should only contain plot-definition files (section 6.2.3). All plot-definition

files that you wish to access through the GUI must be located here. If your project includes both simulation runs and

position-analysis runs, then this folder should be divided into two sub-folders, PosAnalysis and Simulation. The plot

definitions folder (or its sub-folders) must contain the file QuickView-DoNotErase.zmdb in order to use the GUI’s

Quick View feature (section 3.6.4 part I).

 Runs — The GUI assumes that all sub-folders in this folder are run directories. All run directories that you wish to

access through the GUI must be located here. If your project includes both simulation runs and position-analysis

runs, then this folder should be divided into two sub-folders, PosAnalysis and Simulation.

Although we describe the preferred directory structure here, the names and paths of all these folders are user-definable in the

file directry.nam . See section 3.3.4 for details. The directory structure may be more complicated if your project uses

subgroups (section 3.3.8).

3.3.2 HOME FOLDER

For the GUI to function, certain files must be found in the home folder. The list of required files does not change even if you

have multiple subgroups (section 3.3.8). Except for special cases, you should not have to handle these files directly because

the GUI handles them for you. The required files are listed below.

If you are running OASIS from your local computer, the home folder and the executables folder are usually the same folder,

so all the files listed in section 3.3.3 should also be considered to be in the home folder. However, if you are running OASIS

from a remote server, the executables folder is usually kept separate from the home folder.

 Directry.nam – (section 3.3.4) This is an ASCII text file that tells the GUI what the basic directory structure is. The

GUI automatically records the identity of the currently open run in this file. The other information in this file must

-63-

be changed manually. It is uncommon that the information in this file would need to be changed manually, except

when first installing the software.

 GUI.ini – This is an ASCII text file that stores configuration information for the GUI. You may manually make

changes to this file using a text editor. Many parameters in this file can be changed through the GUI itself using the

Preferences dialog box (section 3.6.2 part C). See section 3.3.5 for a complete list of the parameters in this file.

 Record_dates.dat – This is an ASCII text file that records the date at the beginning and end of the historical

hydrologic record. This information is needed if you are running the update-record process. Otherwise, the file does

not need to be present.

 Plot.cf – (section 6.2.1) This is an ASCII text file that tells Plot.exe what run directories and plot-definition files to

read. The GUI automatically writes this file when you click on Plots and select plot-definition files. Therefore, you

should never have to look at this file unless you execute Plot.exe outside of the GUI.

 Onevar.cf – (section 6.1.2) This is an ASCII text file that tells Onevar.exe what Onevar-input file to read. This file

is not used by the GUI. It is only needed if you execute Onevar.exe outside of the GUI.

 Template.mdb – When the GUI is started, it immediately attempts to connect to a database file. Template.mdb must

be present so that there is a database file to connect to. After some processing, the GUI connects to the database file

in the currently open run and disconnects from Template.mdb. The contents of Template.mdb are unimportant, and

there is no reason you should ever need to open it.

 OASIS.idKey – (section 4.2.0) This is an ASCII text file that contains encrypted information identifying the licensee

of the OASIS project. Model.exe will not execute if this file is not present, or if it has been tampered with. If you

open this file with a text editor or text viewer program, you can see a short description of the licensee. If you have a

problem with this file, contact HydroLogics to have it replaced.

3.3.3 EXECUTABLES FOLDER

If you are running OASIS from your local computer, the home folder and the executables folder are usually the same folder,

so all the files listed below should also be considered to be in the home folder (section 3.3.2). However, if you are running

OASIS from a remote server, the executables folder is usually kept separate from the home folder.

 GUI.EXE – This is the program file for the GUI. Execute this file to begin working with OASIS.

 OASISGUI_Plugin.ocx – This file contains components of GUI.exe that can be customized by HydroLogics.

Different projects use different versions of this file. GUI.exe can not run if this file is not present in the home folder.

 MODEL.EXE – This is the program file for the OASIS model. This file can be executed to simulate the system.

This file is executed automatically by the GUI when you click on Run (if the GUI is in simulation mode).

 ONEVAR.EXE – This is the program file that post-processes table outputs. This file is executed automatically by

the GUI after you click on Tables and select Onevar inputs.

 PLOT.EXE – This is the program file that post-processes plot outputs. This file is executed automatically by the

GUI after you click on Plots and select plot-definition files.

 PosAnalysis.EXE – This is the program file for the that manages the position-analysis process. This file is executed

automatically by the GUI when you click on Run (if the GUI is in position-analysis mode).

 SplashScreen.EXE – This is the program file that displays a splash screen identifying the project. The splash screen

is customized for clients. Every time you start the GUI, this program is executed. Clicking on the splash screen

terminates the program. You may execute this file outside of the GUI to see the splash screen.

-64-

This is the pointer file used by OASIS and its graphical user interface.

 | runs\Run1

_runs_Sim | runs\Simulation // The folder containing Sim runs
_runs_PosAnal | runs\PosAnalysis // The folder containing PosAnal runs
_tables_Sim | onevar_input\Simulation // The folder containing Sim Table inputs
_tables_PosAnal| onevar_input\PosAnalysis // The folder containing PosAnal Table inputs
_plots_Sim | plot_defs\Simulation // The folder containing Sim Plot defs
_plots_PosAnal | plot_defs\PosAnalysis // The folder containing PosAnal Plot defs
_exe_VEDIT | C:\PROGRA~1\VEDIT\vpw.exe // The full path to VEDIT executable
_exe_Modules | modules // The folder containing external module programs

Example of Directry.nam

 AXA32.DLL – This is the program file for XA, a linear-program solver produced by Sunset Software. XA is

proprietary software, so HydroLogics arranges for each client to receive a license to use XA. Every copy of XA is

customized to identify the licensee. Unless special arrangements are made, the license specifies that XA may only be

used in conjunction with OASIS. Model.exe calls upon the library routines in AXA32.DLL during simulation. You

cannot execute AXA32.DLL in any other context. Model.exe cannot run if AXA32.DLL is not present.

 WCT32FR3.DLL and WRT32FR3.DLL – These are library files called upon by Plot.exe. The files were

originally written by Quinn-Curtis Inc., and subsequently customized by HydroLogics. Plot.exe cannot run if these

files are not present.

3.3.4 POINTER FILE Directry.nam

The file directry.nam is the pointer file used by model.exe to identify the current run folder (section 4.3.0). The GUI uses

directry.nam for the same purpose, but it also reads the location of important files and folders. Directry.nam must always be

in the home folder (section 3.3.1). If you rearrange the directory structure of your project, you will need to reflect those

changes in this file. Refer to the example below:

Each entry is preceded by a pipe character (a vertical bar). The first entry, which is used by both the GUI and model.exe is

the path of the current run folder. For all entries except the first entry, the pipe character is preceded by a field name. The

entry in the field is followed by a comment which begins with two slashes. The path information in the these fields is either

absolute or relative to the home folder. The following fields are required:

 _runs_Sim This field contains the path of the subdirectory of the Runs folder (as described in section 3.3.1)

which contains all run directories for simulation mode (section 3.4.7). If there is no position-

analysis mode in your project, then it may be convenient for this entry to simply be the Runs

folder. If there is no simulation mode in your project, then the entry in this field is unimportant.

 _runs_PosAnal This field contains the path of the subdirectory of the Runs folder (as described in section 3.3.1)

which contains all run directories for position-analysis mode (section 3.4.7). If there is no

simulation mode in your project, then it may be convenient for this entry to simply be the Runs

folder. If there is no position-analysis mode in your project, then the entry in this field is

unimportant.

 _tables_Sim This field contains the path of the subdirectory of the Onevar_input folder (as described in section

3.3.1) which contains all Onevar-input files for simulation mode (section 3.4.7). If there is no

position-analysis mode in your project, then it may be convenient for this entry to simply be the

Onevar_input folder. If there is no simulation mode in your project, then the entry in this field is

unimportant.

-65-

 _tables_PosAnal This field contains the path of the subdirectory of the Onevar_input folder (as described in section

3.3.1) which contains all Onevar-input files for position-analysis mode (section 3.4.7). If there is

no simulation mode in your project, then it may be convenient for this entry to simply be the

Onevar_input folder. If there is no position-analysis mode in your project, then the entry in this

field is unimportant.

 _plots_Sim This field contains the path of the subdirectory of the plot_definitions folder (as described in

section 3.3.1) which contains all plot-definition files for simulation mode (section 3.4.7). If there

is no position-analysis mode in your project, then it may be convenient for this entry to simply be

the plot_definitions folder. If there is no simulation mode in your project, then the entry in this

field is unimportant.

 _plots_PosAnal This field contains the path of the subdirectory of the plot_definitions folder (as described in

section 3.3.1) which contains all plot-definition files for position-analysis mode (section 3.4.7). If

there is no simulation mode in your project, then it may be convenient for this entry to simply be

the plot_definitions folder. If there is no position-analysis mode in your project, then the entry in

this field is unimportant.

 _exe_VEDIT This field contains the path of the VEDIT executable (section 3.2.0). The GUI will not run if the

path to the VEDIT executable is invalid.

 _exe_Modules This field contains the path of the modules folder (as described in section 3.3.1).

3.3.5 CONFIGURATION FILE GUI.ini

You can change many features of the GUI by editing the file GUI.ini. Many of the configuration settings stored in GUI.ini

can be set through the Preferences dialog box (section 3.6.2 part C), but others can only be set by editing the file in a text

editor program.

The file is in ASCII format (plain text), and it follows the conventions of other Windows ini files. Some of the conventions

are:

 All parameters for configuring the GUI appear after the heading [OASISGUI] . Other headings can be put in the file but

they are ignored by the GUI.

 Each parameter appears on its own line.

 The parameters are entered like so:

ParameterName=ParameterValue

No white space is needed. If ParameterValue is a file path or other text string, it should have quotation marks, like so:

_AcrobatUserManual="MANUAL\OASIS_Manual.pdf"

 A semicolon at the beginning of a line or a semicolon with a space before it is treated as a comment marker. The

semicolon and everything after it is not read by the GUI. Thus, explanatory comments can be entered into the file.

However, if a semicolon has text other than a space before it, it is not treated as a comment marker.

 The tokens $(ExeDir) and $(HomeDir) can be used in any parameter that contains a path name. When the GUI reads a

parameter containing these tokens, it internally reads them as the path of the executables folder (see section 3.3.3) and

the home folder (see section 3.3.2). For example, if the path of the home folder is C:\OASIS and we have this

parameter:

_WinHelp=$(HomeDir)\MANUAL\OASIS_Manual.pdf

Then the GUI recognizes this to mean

_WinHelp=C:\OASIS\MANUAL\OASIS_Manual.pdf

-66-

The parameters that can be entered in the file are:

 _ModeSim - If 1, the GUI can do Simulation Mode (section 3.4.7). If 0, the GUI does not make Simulation Mode

available.

 _ModePosAnal - If 1, the GUI can do Position-Analysis Mode (section 3.4.7). If 0, the GUI does not make Position-

Analysis Mode available.

 TbVis_Schematic - If 1, the Schematic tab is visible. If 0, the Schematic tab is invisible.

 TbVis_Setup - If 1, the Setup tab is visible. If 0, the Setup tab is invisible.

 TbVis_Time - If 1, the Time tab is visible. If 0, the Time tab is invisible.

 TbVis_Node - If 1, the Node tab is visible. If 0, the Node tab is invisible.

 TbVis_Arc - If 1, the Arc tab is visible. If 0, the Arc tab is invisible.

 TbVis_OCL - If 1, the OCL tab is visible. If 0, the OCL tab is invisible.

 TbVis_M isc - If 1, the Misc tab is visible. If 0, the Misc tab is invisible.

 IDf_NNumbers - If 1, tables on the Node tab show a column for node numbers. If 0, node numbers are not shown.

 IDf_NNodeNames - If 1, tables on the Node tab show a column for node names. If 0, node names are not shown.

 IDf_ANumbers - If 1, tables on the Arc tab show a column for node numbers. If 0, node numbers are not shown.

 IDf_ANodeNames - If 1, tables on the Arc tab show a column for node names. If 0, node names are not shown.

 IDf_AArcNames - If 1, tables on the Arc tab show a column for arc names. If 0, arc names are not shown.

 _SplashScreen - If 1, the splash screen is shown when the GUI starts. If 0, no splash screen is shown.

 _SetupGame - If 1, the GUI shows controls for gaming parameters (section 3.7.2) and configures the run based on the

gaming parameters. If 0, gaming parameters are not shown or used.

 _SetupInitCond - If 1, the Initial Conditions table appears on the Setup tab. If 0, the Initial Conditions table does

not appear on the Setup tab.

 _SetupOCLFiles - If 1, the list of OCL files appears on the Setup tab. If 0, this list-box does not appear on the Setup

tab.

 _CopyNotesFile - If 1, the GUI propagates the text in the notes file (section 3.4.5) from the existing run to the new

run when you copy a run. If 0, the GUI applies a blank notes file when a new run is created.

 _DeleteOutput - If 1, the GUI deletes output files every time the run is saved. If 0, the GUI does not delete output

files.

 _RunDirAbsPath - If 1, the GUI writes the path of the current run folder in directry.nam (section 3.3.4) as an

absolute path. If 0, the GUI writes this path relative to the home folder.

 _HydUpdate - If 1,the GUI displays the Update Record tab. If 0, the Update Record tab is invisible and you can not

run the record-updating process.

 _HydUpdateDBFile - The file path (relative to the home folder) and name of an MS Access (MDB) file in which the

update-record table is stored. If this parameter is not present, then the file name basedata\hydrologic_update.mdb is

used. This parameter is ignored if _HydUpdate is not present.

 _HydUpdateCommand - The command to be executed to update records. The command may include command-line

paramters for the executable. The path to the executable is relative to the home folder. This parameter is ignored if

_HydUpdate is not present.

 _HydUpdateWorkDir - The file path (relative to the home folder) where the command for updating records should be

executed. This parameter is ignored if _HydUpdate is not present

 _NumSubGroups - The number of subgroups (section 3.3.8). If 0, there are no subgroups. If more than 0, then there

must be parameters _SubGroupXX to match.

 _SubGroupXX - (where XX is a two-digit number) The name of subgroup folder number XX (section 3.3.8).

-67-

 Plot_Filter - The filter for filenames in the plot-definitions folder (section 3.3.1). If this parameter is not present, the

GUI allows you to select any file in the plot-definitions folder. If the parameter is present, only files that match the

filter can be selected. See notes about filters below.

 Table_Filter - The filter for filenames in the Onevar-input folder (section 3.3.1). If this parameter is not present, the

GUI allows you to select any file in the Onevar-input folder. If the parameter is present, only files that match the filter

can be selected. See notes about filters below.

 OCL_Filter - The filter for filenames in the OCL folder (section 3.3.7). If this parameter is not present, the GUI

allows you to select any file in the OCL folder. If the parameter is present, only files that match the filter can be

selected. See notes about filters below.

 DSS Path - The full path and file name of the HecDssVue executable (section 4.6.0).

 _AutoDeleteNodes - If 1, then when you delete a node or arc from the schematic, all records for that node or arc are

deleted from all static-database tables. If -1, then deleting a node from the schematic only causes deletion of the node

from the Node table and deleting and arc only causes deletion of the arc from the Arc table. If 0, then the GUI prompts

you whether you want to delete the records for the node or arc from the other tables.

 _SortByYearScheme - If 1, pattern-type tables (section 4.5.1) are sorted according to the OASIS year scheme

(section 2.8.5). If 0, pattern-type tables are with January 1 at the beginning regardless of the OASIS year scheme.

 _OCLConstants - If 1, the OCL Constants table (section 4.5.9 part C) is visible on the OCL tab; the GUI saves the

constants to the file specified by the parameter _OCLConst_fName; and the table Constants must be present in the file

statdata.mdb. If 0, the table is not visible; the GUI does not save constants to an OCL file; and the table Constants is

not required in the file statdata.mdb.

 _OCLConst_fName - The name of an OCL file in which the constants from the OCL Constants table (sec 4.5.9 part C)

are written. The file is written to the OCL subfolder of the run folder (section 3.3.7). No path information should be

given. If the parameter _OCLConstants is 0, then this parameter is ignored. If _OCLConstants is 1 but this parameter

is not given, then the default name of constants_inc.ocl is used.

 _WinHelp - The path (relative to the home folder) and file name of a help file in WinHelp (HLP) or HTMLHelp

(CHM) format. If this parameter is present, the help file can be called from the menu Help > Help (section 94). If the

parameter is not present, Help > Help is not available in the menu.

 _AcrobatUserManual - The path (relative to the home folder) and file name of the OASIS user manual in Adobe

Acrobat (PDF) format. If this parameter is present, the manual file can be opened from the menu Help > User Manual

(section 94). If the parameter is not present, Help > User Manual is not available in the menu.

 CustomMenu_HelpX - Defines a custom item in the Help menu (section 94). X is a number from 1-8, so that there

may be up to 8 custom items in the Help menu. The parameter consists of two pieces of information, separated by a

pipe character. The first part contains the label of the custom menu item. The second part contains the system

command that is automatically executed when this custom menu item is clicked. The second part can be a full

command including command-line parameters. Alternatively, it can be the path of a file that should be opened, and the

operating system will open the file with the appropriate software according to the registered file types. For example:

CustomMenu_Help1=Project Notes | MANUAL\Project_Notes.pdf

Causes the creation of an item in the Help menu labeled Project Notes. When this menu item is clicked, the GUI

automatically opens the file Project_Notes.pdf using whatever software is registered to open a file with PDF extension.

 AddnlCopyFiles - The names (with path relative to the home folder) of additional files and folders that should be

copied from an old run to a new run when a new run is created (section 3.4.2). The file names can include wildcards (?

and *) and they should be separated by semicolons. Do not put space before the semicolons.

 _IHA_PostProc - If 1, the IHA post-processing feature is enabled (section 3.6.4 part C). If 0, this feature is disabled.

If this parameter is not present, then IHA post-processing is disabled.

 _IHA_ProjTemplate - The path (relative to the home folder) of a folder that serves as the template for a new project

folder when doing IHA post-processing (section 3.6.4 part C). If IHA post-processing is disabled, then this parameter

is ignored.

 _IHA_EXE - The command (including path) that launches the IHA GUI when doing IHA post-processing (section

3.6.4 part C). If IHA post-processing is disabled, then this parameter is ignored.

-68-

 FatalMissingVarSet - If 1, then when the model runs, any variables that require an OCL SET command (section 4.7.2

part F) but lack an OCL SET command will trigger a fatal error message. If the parameter is missing or if its value is 0,

then missing OCL SET commands will be listed in debug.out, but there is no fatal error.

Notes:

 File Filters - The parameters Plot_Filter, Table_Filter, and OCL_Filter are used to store filename filters for

displaying lists of files in list boxes.

For example, the OCL Command Files list box (section 3.7.6) lists files in the OCL subfolder that the user can select.

If a filename filter is entered with the OCL_Filter parameter, this can limit the filenames that are shown in the list box.

The filter is created with wildcard characters * and ?. Typically, you want to only display files with certain filename

extensions. If you only want files with the OCL extension to show up in the list, then the parameter can be entered as:

OCL_Filter=*.ocl

However, if you want to display files with the OCL and DAT extension, you can separate multiple filters with a

semicolon. Do not put space before the semicolon. For example:

OCL_Filter=*.ocl;*.dat

3.3.6 DETERMINING FILE VERSION

HydroLogics frequently updates the OASIS software to add new features or to fix program bugs. Each update of the software

is assigned a version number. There are three sets of version numbers:

 Model.exe, PosAnalysis.exe, Onevar.exe, and Plot.exe all share source code in common, so they are all assigned a

single version number.

 GUI.exe has its own version number. It also has a two-letter code (example: AC) that must match the two-letter code

in OASISGUI_Plugin.ocx

 OASISGUI_Plugin.ocx has its own version number. It also has a two-letter code (example: AC) that must match the

two-letter code in GUI.exe. Finally, the plugin has a name that tells what project it is customized for. If it is not

customized for a specific project, this name is NO CUSTOM .

There are two principal ways of checking the version number of your copy of the software

 Through Windows: Right-click on the executable file from Windows Explorer. A dialog box will pop up. Click

on the tab labeled Version. The version number will be displayed. For GUI.exe and OASISGUI_Plugin.ocx, the

two-letter code for plugin compatibility and the plugin name are under Comments.

 Through the OASIS GUI: Click on the menu Help, then About (File Version). A display window appears which

reports the version number of the executable files. It tells the two-letter code for plugin compatibility (GUI.exe and

OASISGUI_Plugin.ocx should have the same two-letter code). It also displays the project name of

OASISGUI_Plugin.ocx. Click on this window to close it.

If there is a problem that causes the GUI to crash before it finishes opening, you should still be able to get it to report

the version number. Execute this command (from DOS, from the Run command, or using a Windows shortcut):

GUI.EXE VerInfo

The command-line option VerInfo causes the GUI to run without doing anything more than displaying the version

information window. When you click on the window, the GUI closes.

-69-

3.3.7 FILES IN THE RUN DIRECTORY

In order for the GUI to function properly, certain files must be present in the run directory (section 2.3.1). In most cases, you

should not have to directly access files that are in the run directory, because the GUI handles these files for you.

 Model.cf – (section 4.3.0) This is an ASCII text file that tells the software which files contain input and output data.

You should never have to look at this file unless you are running the model outside of the GUI.

 StatData.mdb – This is an MS Access database file that contains the standard model input (section 4.5.0). You

should not need to access this file directly except in rare cases, because the GUI provides an interface to the data.

 Notes.dat – (section 3.4.5) This is an ASCII text file that contains notes describing the model run. You should not

need to access this file directly because the GUI provides an interface for you to read and edit the notes.

 OCL folder – This folder contains all the OCL files (section 4.7.0) for the run which are accessible to the GUI. If

any OCL file is located outside this folder, it is not accessible for viewing and editing through the GUI.

 Output folder – (Position-Analysis runs only) This folder contains all the time-series output databases (section

5.6.0) generated by model.exe during a position-analysis run. You should not need to access these files directly.

 Other files – Output files generated by model.exe go into this folder, as well as post-processed tables generated by

Onevar.exe. If you are doing special processing of data in spreadsheets or other software, you may find it

appropriate to save your files into the run directory.

-70-

3.3.8 SUBGROUPS

You can divide your runs and post-processor files into subgroups. Only one sub-group is open at a time, and while that sub-

group is open, the GUI only accesses the runs and post-processor files that are specific to that sub-group. Therefore, the GUI

prevents you from mixing the files that belong to different subgroups. Sub-groups can be useful if you need to model separate

systems or if you have sets of runs that do not need to be compared between sets. By using subgroups, you can avoid dealing

with long lists of runs or post-processor files when only a few are relevant to you at a time.

To create subgroups, you must manually configure the GUI while GUI.exe is not running. Each subgroup must have a

subfolder of the home folder. A directory structure with two subgroups is illustrated below. Compare this directory structure

with the standard structure described in section 3.3.1. Note that in this example the GUI is configured for Simulation mode

only (no Position Analysis mode).

When there are subgroups, the home folder (section 3.3.2) should contain the all same files as it would otherwise. Each

subgroup folder contains a version of the folders basedata, onevar_input, plot_definitions, and runs. The names of the

subgroup folders are completely user-defined -- we have assigned the names SubG-1 and SubG-2 only as examples. There is

no reason to put copies of the files from the home folder into the subgroup folders. The only file that must be in the subgroup

folder is an ASCII text file called SubDir.nam.

When you tell the GUI to open a new subgroup, it first overwrites SubDir.nam in the currently open subgroup with

Directry.nam (section 3.3.4) from the home folder. Then it overwrites Directry.nam in the home folder with SubDir.nam

-71-

This is the pointer file used by OASIS and its graphical user interface.

 | SubG-1\runs\Run1

_runs_Sim | SubG-1\runs // The folder containing Sim runs
_runs_PosAnal | SubG-1\runs // The folder containing PosAnal runs
_tables_Sim | SubG-1\onevar_input // The folder containing Sim Table inputs
_tables_PosAnal| SubG-1\onevar_input // The folder containing PosAnal Table inputs
_plots_Sim | SubG-1\plot_definitions // The folder containing Sim Plot defs
_plots_PosAnal | SubG-1\plot_definitions // The folder containing PosAnal Plot defs
_exe_VEDIT | C:\PROGRA~1\VEDIT\vpw.exe // The full path to VEDIT executable
_exe_Modules | modules // The folder containing external module programs

Example of SubDir.nam

from the subgroup that is being newly opened. Thus, the files named SubDir.nam simply serve as auxiliary copies of

Directry.nam . For illustration, here is the text that should be in SubDir.nam in the folder SubG-1:

As the example shows, each instance of SubDir.nam could become the new Directry.nam , and so it contains path references

that should be applied when the associated subgroup is opened. The instance of SubDir.nam in the folder SubG-2 would look

the same except it would refer to the subfolders of SubG-2 instead of SubG-1.

Note that the directory structure is user-defined, and the example we have given is just one possible configuration. If you

wish, you could configure it so that the runs are held in common between the subgroups, while the post-processor files are

distinct for each subgroup. Conversely, the post-processors could be held in common and the runs could be distinct. You

may also choose put the BaseData folder into the home folder so that it is held in common by all subgroups. In short, you can

configure the subgroups in the way that is most convenient for your project.

The subgroup configuration should be reflected in the file preferences.cf. In our example with two subgroups, the following

lines should be found in preferences.cf.

 _NumSubGroups | 2
 _SubGroup01 | *SubG-1
 _SubGroup02 | SubG-2

If the file does not contain the field _NumSubGroups, then the GUI assumes that there are no subgroups. Otherwise, the field

_NumSubGroups must contain the number of subgroups. For each subgroup, there must be a field named _SubGroupXX,

where XX is the number of the subgroup (from 1 to the number of subgroups). The field _SubGroupXX contains the name of

the subgroup folder. One of the subgroup folder names must be preceded by an asterisk (*). This denotes which of the

subgroups are currently active.

Once the directory structure is created, and the files Directry.nam , SubDir.nam , and preferences.cf contain the appropriate

text, you can open a different subgroup through the GUI controls and you do not need to handle these files directly.

To open a different subgroup, click on the Edit menu, then on Preferences. Next click on the tab SubGroups. Then you can

highlight the subgroup you want to open, and click OK. See section 3.6.2 part C for more information.

-72-

3.4.0 HANDLING RUN DIRECTORIES

See section 2.3.1 for an explanation of the run directory concept. The OASIS GUI is designed to make it easy to deal with

run directories.

3.4.1 OPEN RUN

Only one run at a time can be the open run. The open run is identified on the title bar of the main GUI window. You may

also verify the name of the open run by clicking on the Edit menu, then on Notes (section 3.6.2 part B).

All model input displayed by the GUI is the input of the open run. To see or edit the input of another run, you must open that

run. If you run the model, it is the open run and no other that is executed. To execute another run, you must open that run.

When you open model output through the GUI, you may open the output of any run (within the same mode - simulation or

position analysis (section 3.4.7), and within the same subgroup), but the open run is offered as the default for the output.

To open a new run, click on the File menu, and then click on Open Run. See section 3.6.1 part B.

To open a run in a different subgroup, you must first open that subgroup. See section 3.6.2 part C.

When you select Save, all changes made to the open run are saved. See section 3.4.6.

3.4.2 CREATING A NEW RUN

To create a new run, you must start by copying one of the currently existing runs. Once that is done, you can modify the input

of the new copy to fit your new modeling scenario.

To copy an existing run, click on the File menu, then on Copy Run. See section 3.6.1 part A.

When the GUI creates a new run in this way, it copies the files model.cf, statdata.mdb, notes.dat, the ocl subfolder, files and

subfolders that might be determined by the GUI plugin, and the additional files and subfolders specified in the preferences

(3.6.2 part C). Any other files or subfolders in the source run folder are not copied. Thus, as a general rule, model output

files and post-processor output files are not transferred to the newly created run.

To create a run in a different subgroup, you must first open that subgroup. See section 3.6.2 part C.

Although we don't recommend it for most situations, you can create a new run outside the GUI. Simply copy an existing run

folder to and paste it into the folder where the other runs are found (in our examples, these folders are named Runs,

Runs/Simulation, or Runs/PosAnalysis). As long as the new folder contains the necessary files (Section 3.3.7), the GUI will

recognize it as a run that can be opened and executed.

3.4.3 DELETING A RUN

To delete a run, click on the File menu, then on Delete Run. See section 3.6.1 part C. You may delete the open run or any

other run (within the current subgroup). You can only delete one run at a time. When the run is deleted, it is not saved in the

Windows Recycle Bin.

To delete a run in a different subgroup, you must first open that subgroup. See section 3.6.2 part C.

Deleting a run folder outside of the GUI is an effective way to delete a run. However, you must be careful not to delete the

open run if you do this. To be safe, we suggest you only delete runs through the GUI.

-73-

RUN PATH : C:\OASIS\Runs\Alt_2G
MODIFIED BY : Jill X.
EXECUTION TIME : Thu Oct 03 2002 13:24

This run is fictitious. It is identical to fictitious run "Alt_2F" except the target
flows below Reservoir 1 have been increased to 30 CFS in August.

Example of Notes.dat

3.4.4 CHANGING THE NAME OF A RUN

If you wish to change the name of a run, you must do so outside of the GUI. Do not try to change the name of a run while it is

the open run. To change the name, simply rename the run folder.

3.4.5 NOTES FILE

Every run folder must contain an ASCII text file named Notes.dat. The GUI maintains the format of this file for you.

Normally, you view or change this information through the GUI by clicking on the Edit menu, then on Notes (section 3.6.2

part B). We do not recommend that you edit this file outside the GUI. However, if you open the file with a text editor or text

viewer, outside the GUI, you can see the following information:

The first field of information, labeled RUN PATH , is automatically maintained by the GUI. It is the full path of the run

folder. The second field, MODIFIED BY, corresponds to an input field that you should fill whenever you enter the notes file.

The third field, EXECUTION TIME, tells the last time model.exe was executed for this run. The GUI automatically maintains

this field. The remainder of the file is a free-format description of the run that you write. See section 3.6.2 part B for more

information about maintaining the notes.

If the notes file is missing, simply create a blank file named Notes.dat in the run folder. The next time you click on Edit and

then Notes, the GUI will create the necessary fields.

When you use the GUI to copy a run, the notes file is transferred to the newly created run. However, the GUI automatically

erases the MODIFIED BY field and the description field. This is to prevent these fields from being propagated when they

might contain false information. You must enter fresh text into these fields with every run that you create (although copy-and-

paste is always possible). However, it is possible to configure the GUI so that the description field is automatically copied

with the rest of the file. See section 3.6.2 part C for information about setting this preference.

The GUI automatically writes the name of the folder name of the run (not the complete path) and the entry from the

MODIFIED BY field into the second line of the model.cf control file (section 4.4.0). Thus, this becomes the run description

which can be written to Onevar output by using the [RunDesc] substitute name (section 4.7.1 part I).

3.4.6 SAVING THE RUN

When a run is saved, all data represented in the GUI tables and other controls is saved to file. Until the data is saved, the

changes only exist in computer memory and are not recorded in the file on disk. Therefore, if you close the run (by opening

another run, or by closing the GUI) without saving, the changes will be lost.

When you run the model (Section 3.4.8), the GUI automatically saves your changes without prompting you for confirmation.

You can save your changes at any time by selecting the File menu, then Save Run (Section 3.6.1 part D).

OCL files open in a VEDIT window do not get saved by this process. When you open an OCL file, the GUI opens VEDIT

(section 3.2.0) and then has no more control of what happens in the VEDIT interface. To save your OCL files, you must

select Save in the VEDIT menu.

-74-

Changes to the notes file (section 3.4.5) are immediately saved any time you click OK in the Edit Notes dialog box (section

3.6.2 part B). In other words, the GUI does not wait for you to click Save Run before it saves the notes file.

The GUI can be configured so that output files are deleted every time the run is saved. This can prevent confusion when a run

has been executed, and then further changes are made to the input after execution (the red light with the message OUTPUT

NOT CURRENT always appears on the status bar to warn you if input data has been changed after a run was executed).

Specifically, the GUI deletes the following files that are found in the run folder:

 all files with the extensions TXT and OUT in their file names.

 the DSS output file as listed in model.cf.

 (in position-analysis mode only) all files in the folder output.

If the GUI is configured for auto-deletion, then the auto-deletion occurs at the following times

 An OCL file that appears in the OCL files list has been modified and saved.

 The run has been saved.

To configure the GUI to automatically delete output files, check the Auto Delete Output box in the preferences dialog box

(section 3.6.2 part C). It is conceivable that a file that you do not want deleted could be automatically deleted in this process,

so you should consider whether using this option is really of benefit to you or not.

3.4.7 SIMULATION MODE AND POSITION-ANALYSIS MODE

The GUI can be configured to handle two different modes. In simulation mode, the model generally runs for the period of

historical record in a single trace. This is the simpler type of study used for long-term planning. In position-analysis mode,

the model generally runs for a short period in multiple traces. This type of study is more often used for short-term planning.

See Chapter 9 for more info about position analysis.

The type of study makes a difference in

 the type of input that should be handled

 the procedures handled when the model executes

 the format of the output that is created

 the matching of runs to post-processor input files

 the procedures handled for post-processing

Therefore, the two GUI modes exist to handle the different sets of procedures for the two different study types. Also, the run

folders and post-processor inputs of the two modes are segregated to avoid confusion. Section 3.3.1 shows the preferred

directory structure with the segregated run folders and post-processor folders.

The GUI makes it easy to handle the two different modes. Whenever you open a run or create a new run, you may select from

either the simulation runs or the position-analysis runs. Whichever type you select, the GUI automatically sets itself into the

mode of the run that you selected or created. When you request table or plot output, the GUI only allows you to match

simulation post-processor files with simulation runs, and position-analysis post-processor files with position-analysis runs.

The current mode is displayed in the title bar of the main GUI window after the name of the open run.

The GUI can also be configured to handle only one of these modes. See section 3.6.2 part C for details about how to set

preferences. If only one mode type is selected, then the GUI does not offer you the choice of different mode types when you

select a run directory, and it does not display the mode type in the title bar of the main GUI window.

-75-

3.4.8 RUNNING THE MODEL

To run the model, click on Run, then Execute OASIS Model (section 3.6.3). If the GUI is in simulation mode, then it will

execute model.exe. If the GUI is in position-analysis mode, then it will execute PosAnalysis.exe. See section 3.4.7 for more

information about the two modes. The open run is the only run that can be executed. If you wish to execute another run, you

must first open it. If you are using the GUI at all, then you are strongly discouraged from running the model outside of the

GUI.

3.4.9 LOCKING RUNS

If a run has been executed, you can lock the run folder in the GUI to protect the input data from further changes. When the

run is locked, the input tables displayed by the GUI will not accept any user changes, and the GUI opens the OCL files in

VEDIT in read-only mode. The model cannot be executed on a locked run. It is possible to make graphical changes to the

schematic (section 3.7.1) and to change the notes (section 3.4.5) on a run that has been locked because such changes are

superficial – they can't affect the simulation results.

To lock a run, select the File menu, then Lock Run (section 3.6.1 part E). Once the run is locked , a check mark is displayed

next to Lock Run in the menu. The GUI does not allow a run to be unlocked once it has been locked.

Locking a run in the GUI does nothing to prevent the input data from being modified outside the GUI.

If you create a new run by copying a locked run, the new run will not be locked.

3.5.0 VIEWING OUTPUT

One of the GUI's most important functions is to make it fast and easy for you to display model output. All varieties of the

model output are displayed through the Output menu (section 3.6.4). After you select one of the output types under this

menu, the GUI presents you with a dialog box that allows you to select one or more runs whose output you can display.

The first two choices in the Output menu are TABLES and PLOTS. To view these types of output, post-processor programs

(Chapter 6) must be run. If you select TABLES, the GUI automatically runs Onevar.exe and then displays the files it creates

in a VEDIT window. If you select PLOTS, the GUI automatically runs Plot.exe.

The GUI also contains the powerful Quick View feature. This feature automatically creates post-processor input files for you

before running Onevar.exe or Plot.exe. The Quick View dialog box provides a friendly interface for selecting which variable

you want to see in the output, as well as the format of the output. See section 3.6.4 part I for a complete description of Quick

View. You can access the Quick View dialog box in the following ways:

 Click Quick View in the Output menu (section 3.6.4 part I).

 In the schematic (section 3.7.1), right-click on a node or arc and then click Quick View in the menu. The node or arc

that you clicked on will be selected by default in the Quick-View dialog box.

 In the Node Settings dialog box (section 3.8.1) or the Arc Settings dialog (section 3.8.2), click the Quick View

button. The node or arc that you were viewing will be selected by default in the Quick-View dialog box.

-76-

3.6.0 MENU INTERFACE DETAILS

3.6.1 File MENU

A. Copy Run

Click on Copy Run in the File menu to create a new run by copying an existing one. After you click on Copy Run, this dialog

box appears:

On the top left of the dialog box are two option buttons, labeled Simulation Runs and Position Analysis Runs. When you

click on Simulation Runs, the box in the lower left lists all of the runs in simulation mode. When you click on Position

Analysis Runs, the box in the lower left lists all of the runs in position-analysis mode. If you are not running the GUI with two

modes available, then these option buttons do not appear. See section 3.4.7 for explanation of the two modes.

When you click on one of the runs in the box in the lower left, the full path of that run folder is displayed in purple text in the

box on the right. The entire notes file (section 3.4.5) for that run is displayed in the large box in the lower right. This is to

help you identify which run you want to copy.

-77-

After you have selected (in the box on the left) the run that you want to copy, click the OK button. After you click OK, the

following dialog box appears:

In this dialog box, the folder that you are copying is displayed in purple text as a reminder. If you decide at this point that this

is the wrong folder to copy, click the Cancel button and you will return to the previous dialog box. Otherwise, enter the name

of the new run you are creating into the box on the lower left. Do not include path information in this name (enter the name of

a single folder only). Click OK when you are done.

After you click OK, the GUI makes a copy of the existing run that you selected. Specifically, it creates the new folder, and

copies the following files from the existing folder to the new folder: StatData.mdb, Model.cf, Notes.dat, and the subfolder

OCL and every file within it. GUI users do not necessarily have to understand what these files are, but it is important to

recognize that no output files are copied in this process, nor are any other files that you might have placed into the existing

run folder for your own reasons. See section 3.3.7 for some description of these files.

After the GUI creates the new files, the new run that you created becomes the open run. Before it closes the previously open

run, it asks you whether you want to save your changes. The GUI automatically corrects the identifying fields in the notes file

(section 3.4.5) of the new run. Also, if the run that you copied from had been locked (section 3.4.9), the GUI ensures that the

newly created run is not locked when it is first created. In all other aspects, your newly created run starts out as an exact

duplicate of the run that you copied from.

B. Open Run

Click on Open Run in the File menu to open a different existing run. After you click on Open Run, you see a dialog box that

is virtually identical to the first dialog box that you see when you click Copy Run (section 3.6.1 part A).

On the top left of the dialog box are two option buttons, labeled Simulation Runs and Position Analysis Runs. When you

click on Simulation Runs, the box in the lower left lists all of the runs in simulation mode. When you click on Position

Analysis Runs, the box in the lower left lists all of the runs in position-analysis mode. If you are not running the GUI with two

modes available, then these option buttons do not appear. See section 3.4.7 for explanation of the two modes.

When you click on one of the runs in the box in the lower left, the full path of that run folder is displayed in purple text in the

box on the right. The entire notes file (section 3.4.5) for that run is displayed in the large box in the lower right. This is to

help you identify which run you want to open.

After you have selected (in the box on the left) the run that you want to open, click the OK button. After you click OK, the

GUI opens the run that you selected. Before it closes the previous run, it asks you whether you want to save your changes.

The mode of the GUI (simulation mode or position-analysis mode -- see section 3.4.7) is automatically set to the mode of the

run that you opened.

C. Delete Run

Click on Delete Run in the File menu to delete an existing run. After you click on Delete Run, you see a dialog box that is

virtually identical to the first dialog box that you see when you click Copy Run (section 3.6.1 part A).

On the top left of the dialog box are two option buttons, labeled Simulation Runs and Position Analysis Runs. When you

-78-

click on Simulation Runs, the box in the lower left lists all of the runs in simulation mode. When you click on Position

Analysis Runs, the box in the lower left lists all of the runs in position-analysis mode. If you are not running the GUI with two

modes available, then these option buttons do not appear. See section 3.4.7 for explanation of the two modes.

When you click on one of the runs in the box in the lower left, the full path of that run folder is displayed in purple text in the

box on the right. The entire notes file (section 3.4.5) for that run is displayed in the large box in the lower right. This is to

help you identify which run you want to delete.

After you have selected (in the box on the left) the run that you want to delete, click the OK button. After you click OK, the

GUI deletes the run that you selected. If you selected the open run, then the GUI prompts you for another run to open before

it can delete the open run. When the GUI deletes the run, it deletes the entire run folder and everything in it, including any

files you might have placed in the folder for your own reasons. The deleted files cannot be recovered from the Windows

Recycle Bin.

D. Save Run

Click on Save Run in the File menu to save (to file) the changes that you made through the GUI. See section 3.4.6 for more

information.

E. Lock Run

See section 3.4.9 for information about locking runs. A check mark is displayed in front of Lock Run in the File menu if the

run is locked. If the run is not locked, no check mark is displayed. The GUI will not let you lock a run that has not been

executed. Once you have locked a run, you cannot unlock it.

F. Print Schematic

Click on Print Schematic in the File menu to print a copy of the schematic (to a printer or to a virtual printer such as Adobe

Acrobat). Print Schematic appears in the menu only when the Schematic tab (section 3.7.1) is selected.

-79-

After you click on Print Schematic, this dialog box appears:

On the left is a preview of the image that would be sent to the printer, on a scale representation of the paper. If you click on

the Printer Setup button, you can change the destination printer and the assumed paper size and orientation, along with any

other available printer settings.

A series of check boxes appear in the lower right. If you change your options through these check boxes, the preview image

will change to reflect your selection. The check boxes are:

 Clip to Visible Display: If you check this box, the printed image will be limited to what is currently visible in the

GUI's display of the schematic. If you wish, you can zoom into a particular portion of the schematic, then click on

Print Schematic and check this box, in order to print an enlarged but selected portion of the schematic. When this

box is unchecked, the entire schematic page is sent to the printer.

 Selected Items Only: If you check this box, the printed image will be limited to the items that are currently selected

in the GUI's display of the schematic. Objects that are not selected are invisible. This option would most likely be

used in combination with the Clip to Visible Display check box to print an enlarged but selected portion of the

schematic. When this box is unchecked, all items on the schematic page are sent to the printer.

 Hide Background Image: If there is a background image on your schematic, it is sent to the printer unless this box

is checked.

 Fit Width: When this box is checked, the GUI resizes the printed image so that it has exactly the same width as the

paper. If the Fit Height box is unchecked, then the aspect ratio of the image is preserved. If both the Fit Width and

Fit Height boxes are checked, then the aspect ratio is generally not preserved.

 Fit Height: When this box is checked, the GUI resizes the printed image so that it has exactly the same height as the

paper. If the Fit Width box is unchecked, then the aspect ratio of the image is preserved. If both the Fit Width and

Fit Height boxes are checked, then the aspect ratio is generally not preserved.

After selecting the appropriate options, click OK to send the image to the printer.

-80-

G. Export Schematic

Click on Export Schematic in the File menu to save the image of the schematic to an image file. Export Schematic appears in

the menu only when the Schematic tab (section 3.7.1) is selected..

After you click on Export Schematic, this dialog box appears:

In the upper right is a drop-down control that allows you to select the type of image file you want to save. The choices are

bitmap (*.bmp), metafile (*.wmf), and enhanced metafile (*.emf). Some popular formats such as JPEG and GIF are not

offered. If you want a file in a format that the GUI does not support, you must first save the file in a format that the GUI does

support, then open that file in another program that does support your desired format. Windows Paint is one such program

and it is usually installed with any copy of Windows.

This dialog box also contains a drop-down control in which you can specify the image resolution. This is primarily useful for

bitmap files. At low resolution, a bitmap appears grainy. At high resolution, the image is sharp but the file size can be quite

large. If you select the bitmap (*.bmp) file type, then the GUI automatically displays an estimate of the file size below the

Image Resolution box.

On the left is a preview of the image that will be saved in a file. A series of check boxes appear in the lower right. If you

change your options through these check boxes, the preview image will change to reflect your selection. The check boxes are:

 Clip off Margins: If you check this box, the image that is saved to the file will have the margins "clipped" or

"cropped" off. If the box is not checked, then the entire schematic area is included.

 Clip to Visible Display: If you check this box, the saved image appears like what is currently visible is the GUI's

display of the schematic. If you wish, you can zoom into a particular portion of the schematic, then click on Export

Schematic and check this box, in order to save the image of a selected portion of the schematic. When this box is

unchecked, the area of the entire schematic page is shown in the image file.

 Selected Items Only: If you check this box, the saved image is limited to the items that are currently selected in the

GUI's display of the schematic. Objects that are not selected are invisible. This option would most likely be used in

combination with the Clip to Visible Display check box to save the image of a selected portion of the schematic.

When this box is unchecked, all items on the schematic page appear in the image file.

-81-

 Hide Background Image: If there is a background image on your schematic, it is saved in the image file unless this

box is checked.

After selecting the appropriate options, click OK. The GUI will then prompt you for the name and location of the image file

to save.

H. Exit

Click on Exit in the File menu to close the GUI program. The GUI will ask whether you want to save your changes before it

closes. If you opened any VEDIT windows from the GUI, they are not affected when the GUI closes.

3.6.2 Edit MENU

A. Time Series Data

Click on Time Series Data in the Edit menu to view or edit the time-series data for the open run. When you click on Time

Series Data, this dialog box is displayed:

The upper part of the dialog box shows the name and path of the time-series file that contains all time-series variables for

standard input (section 4.6.2, section 4.6.3, and section 4.6.4). This is the same as the entry in the File ID table (section 4.5.3

part M, section 4.5.4 part C, and section 4.5.5 part C). To change the file that is associated with this run, you can type a

different file name (with path relative to the run folder) into the box, or click Browse to navigate through the directories and

select a file by clicking on it. It is common to use a basedata folder (section 3.3.1) as the location of time-series input, but

you can locate these files anywhere else you find appropriate. Note that the file identified here is not necessarily used for

OCL input. OCL time-series input files are only identified with the :TIMEDB: field in an OCL file (section 4.7.1 part F).

You can click the button in the lower left to open a time-series database file using HecDssVue (section 4.6.0). When you

click the button, you are first shown a dialog box that gives you the option of which time-series file to open. The file shown

above is highlighted by default, but you can select any other file. Once you select a file, it is opened in HecDssVue.

See section 4.6.0 for more information about time-series input data.

-82-

B. Notes

Click on Notes in the Edit menu to view or edit the notes that for the open run. When you click on Notes, this dialog box is

displayed:

The first two fields, Run directory and Time of execution, cannot be edited. The GUI automatically ensures that the data in

these fields is correct. The third field, Modified by, is one that you should fill in every time you create a run. When more

than one person is viewing or working on a project, knowing who put together the data can help avoid confusion. You are

welcome to include group affiliations and make the name as long as you find appropriate.

The last field is the large text box labeled Description of the run. We suggest that you use this field to tell what run was

copied to create the open run, and describe all changes that make the open run different from its predecessor. You should

include any other description of the purpose of the run, the input of the run, and maybe even the results of the run, that are

appropriate to your needs. This description can be as long or short as you like.

See section 3.4.5 for more information about the notes file.

-83-

C. Preferences

Click on Preferences in the Edit menu to change the preference settings of the GUI. If you click on Preferences, the GUI

displays a dialog box with four tabs on it. Each of the tabs is shown and described below.

The first tab is labeled Tabs. On this tab is a list of the tabs that are displayed in the main GUI window. You may choose to

have any of these tabs be visible or invisible. If the box for the tab is checked, then the tab will be visible. Otherwise, it will

be invisible.

Under the heading Setup Tab are several options for displaying special information on the Setup tab:

 Display Initial Condition Table: If this box is checked, then a copy of the Initial Conditions table appears on the

Setup tab (section 3.7.2). Otherwise, this table does not appear on the Setup tab.

 Display OCL files: If this box is checked, then a copy of the list of OCL files appears on the Setup tab. Otherwise,

this list-box does not appear on the Setup tab (section 3.7.2).

 Gaming Parameters: If this box is checked, then controls for the gaming parameters appear on the Setup tab

(section 3.7.2). Otherwise, the controls do not appear.

-84-

On the tab labeled Table Options, under the heading Identifying Fields, you can control the identifying fields that appear in

tables on the Node tab (section 3.7.4) and the Arc tab (section 3.7.5). Every record in every table on the Node tab is identified

by either a node number, a node name, or both. Every record in every table on the Arc tab is identified by either upstream and

downstream node numbers, upstream and downstream node names, arc names, or a combination of two or more of those

identifiers. Place a check mark in front of the types of identifiers that you prefer.

Under the heading Sorting Tables by Dates are two options for how the pattern-type tables (section 4.5.1) are sorted. If the

first option, Base on Year Scheme, is selected, then the pattern-type tables are all sorted such that the first day of the year

scheme is first. If the second option, Always base on January 1, is selected, then the pattern-type tables are all sorted such

that the January 1 is first, whether or not it is the first day of the year scheme. See section 2.8.5 for more information about

the year scheme.

On the tab labeled General are an assortment of options:

 Simulation Mode and Position-Analysis Mode: Put a check in front of the mode type, in order to enable the GUI

to run in that particular mode. You may check one or both of these options. If a mode type is unchecked here, the

GUI does not expect there to be separate folders for the runs and post-processor inputs for that mode. If a mode type

is checked here, then the GUI requires that the runs folder and post-processor folders for that mode (as listed in the

-85-

directry.nam file; see section 3.3.4) be present. See section 3.4.7 for more about the simulation mode and position-

analysis mode.

.

 Record Updates: If this box is checked, then the Update Record tab appears in the main GUI window, allowing

you to add updates to time-series records. On the Update Record tab are recently acquired time-series input values

that are stored in the MS Access database named in the text box. If this box is not checked, then the Update Record

tab does not appear.

 OCL Constants Table: If this box is not checked, then the OCL Constants table (section 4.5.9 part C) is not shown

in the GUI, and no OCL file is written for the OCL constants. If this box is checked, then the OCL Constants table is

shown on the OCL tab, and whenever the run is saved, the contents of the table are written to the file named in the

text box. The file is always written to the OCL subfolder of the run folder (section 3.3.7).

 OCL Node-Names Table: If this box is not checked, then no OCL file is written for the node names. If this box is

checked, then whenever the run is saved, the file named in the text box is rewritten with one OCL substitute (section

4.7.1 part I) for the name of every node in the schematic. The file is always written to the OCL subfolder of the run

folder (section 3.3.7).

 Additional files/folders to copy when a run is copied: The names (with path relative to the home folder) of

additional files and folders that should be copied from an old run to a new run when a new run is created (section

3.4.2). The file names can include wildcards (? and *) and they should be separated by semicolons.

 Splash Screen: If this box is checked, then the splash screen is displayed every time the GUI starts up. If the box is

unchecked, the splash screen is not displayed when the GUI starts up.

 Auto Delete Output Files: If this box is checked then the GUI deletes output files every time the run is saved. If

this box is not checked, then the GUI does not delete output files. See section 3.4.6.

 Auto Copy Notes File: If this box is checked, then the GUI propagates the text in the notes file (section 3.4.5) from

the existing run to the new run when you copy a run. If the box is not checked, then the GUI erases the text in the

notes file when a new run is created. When this box is checked, there is the risk that you will forget to modify the

notes file after copying a run, and false information will be recorded with the run.

Finally, the General tab contains a box with three option buttons that determine what happens when you delete a node or arc

from the schematic (section 3.7.1):

 Always: When you delete a node or arc, it is automatically deleted from all input tables, and the GUI does not ask

for your confirmation.

 With confirmation: When you delete a node or arc, it is automatically deleted from all input tables, but the GUI

prompts you for confirmation first.

 Never: When you delete a node or arc, the GUI does not delete it from any tables except the Node or Arc table.

-86-

On the tab labeled SubGroups is a list box which lists all of the subgroups that are defined for your project. See section 3.3.8

for an explanation of subgroups. The currently active subgroup is highlighted. To open a different subgroup, click on that

subgroup and then click OK. When you open a different subgroup, the GUI opens the run that is currently open for that

subgroup.

The Preferences dialog box does not provide any way for you to add or delete subgroups from the list. To do that, you must

close the GUI, edit the file preferences.cf, and then run the GUI anew (See section 3.3.8).

If your project does not contain any subgroups, then the SubGroups tab does not appear in the Preferences dialog box.

3.6.3 Run MENU

C. Run OASIS Model

Click on Run OASIS Model in the Run menu to execute the model. If the GUI is in simulation mode, it performs the

following steps:

 All input data is saved. See section 3.4.6.

 Execute model.exe.

 Change the indicator on the status bar (section 3.9.0) to green with the message Output CURRENT.

If the GUI is in position-analysis mode, it performs the following steps when you click Run OASIS Model:

 All input data is saved. See section 3.4.6.

 Execute PosAnalysis.exe.

 Change the indicator on the status bar (section 3.9.0) to green with the message Output CURRENT.

See section 3.4.7 for information about the two modes.

You cannot execute the model if the run has been locked (section 3.4.9).

-87-

3.6.4 Output MENU

A. TABLES

Click on TABLES in the Output menu to generate table output with the Onevar program. See section 6.1.0 for details about

Onevar. When you click on TABLES, the GUI displays the following dialog box:

The option buttons on the left allow you to select either position-analysis or simulation runs. In the lower left is a list of all

the runs. That is, it is a list of all the simulation runs or all the position-analysis runs, depending on which of the option

buttons is selected. If your project does not include both simulation mode and position-analysis mode, then the option buttons

do not appear. See section 3.4.7 for explanation of the two modes. If a run has not been executed, then it does not appear in

the list.

In the lower right is a list of all the table-input files (Onevar-input files). Each table-input file in the list defines a particular

table-output file. The list shows all of the simulation table-input files or all of the position-analysis table-input files,

depending on which option button is selected.

Select a run from the list on the left and table-input file from the list on the right, and then click the View Output button to

generate the corresponding table output for the run. The GUI generates the table output by running Onevar.exe, then it opens

the output file in a VEDIT window. See section 3.2.0 for information about VEDIT.

For your convenience, the open run is selected as a default whenever this dialog box opens. More often than not, the output

you wish to see is from the open run. Of course, if the open run has not been executed, then it cannot be selected.

You may select more than one run and/or more than one table input file. If you do this and then click the View Output button,

the GUI runs Onevar.exe to generate a table output for every combination of runs and table-inputs. It then opens all of the

table outputs in a single instance of VEDIT, with each output file having its own document window.

If you select a table-input and then click the Edit File(s) button, the GUI will open the input file (not the output file) in a

-88-

VEDIT window. This is a convenient way to modify your table inputs. You can also use this feature to create new table

inputs by clicking Save As in VEDIT.

B. PLOTS

Click on PLOTS in the Output menu to generate graphical output with the Plot program. See section 6.2.0 for details about

Plot. When you click on PLOTS, the GUI displays a dialog box which is virtually identical to the dialog box displayed when

you click TABLES. The only difference is that the dialog box displays plot-definition files instead of table-input files. You

may wish to refer to the picture of the dialog box used for the TABLES menu option in section 3.6.4 part A.

The option buttons on the left allow you to select either position-analysis or simulation runs. In the lower left is a list of all

the runs. That is, it is a list of all the simulation runs or all the position-analysis runs, depending on which of the option

buttons is selected. If your project does not include both simulation mode and position-analysis mode, then the option buttons

do not appear. See section 3.4.7 for explanation of the two modes. If a run has not been executed, then it does not appear in

the list.

In the lower right is a list of all the plot-definition files (all of the simulation plot-definition files or all of the position-analysis

plot-definition files, depending on which option button is selected). Each plot-definition file in the list file defines a particular

plot display.

Select a run from the list on the left and plot-definition file from the list on the right, and then click the View Output button to

generate the corresponding plot output for the run. The GUI generates the plot by running Plot.exe.

For your convenience, the open run is selected as a default whenever this dialog box opens. More often than not, the output

you wish to see is from the open run. Of course, if the open run has not been executed, then it cannot be selected.

You may select more than one run and/or more than one plot-definition file. If you do this and then click the View Output

button, the GUI runs Plot.exe to generate each of the plots you selected. The plots are all displayed as separate document

windows in a single instance of Plot.exe. Each of the plots displays multiple runs – the complete list of runs that you selected.

See section 6.2.0 for more information about displaying multiple runs and multiple plots.

If you select a plot-definition and then click the Edit File(s) button, the GUI will open the plot-definition in MS Access. This

is a convenient way to modify your plot-definition files. (However, most changes to a plot definition file can be made directly

to the plot output displayed in a session of Plot.exe and then saved, so you shouldn't need to use MS Access very often.)

C. IHA Analysis

Click on IHA Analysis in the Output menu to analyze a single variable using The Nature Conservancy’s IHA Software. The

OASIS GUI creates special post-processor output for the variables you select. It prepares this output as input to IHA, and

then starts the IHA GUI. When the IHA GUI opens, it automatically reads the OASIS post-processor output. It is then up to

you to use the IHA GUI to reconfigure the project and/or run the analyses of your choice on this data. IHA Analysis is only

available in simulation mode.

When you click on IHA Analysis, the OASIS GUI first presents a dialog box that appears like this:

-89-

On the left is a list of all the simulation-mode runs. If a run has not been executed, then it does not appear in the list. You

may select one or two runs. There is more discussion of multi-variable analysis below.

In the frame at the upper-right of the dialog box, you select which variable you want to see. Variables are selected from three

main groups: Node Output, Arc Output, or OCL Udef Var. If you click Node Output, you can then select which node the

variable is associated with in the Node box. Then you select the specific variable in the Variable box. If you click Arc

Output, you can then select which arc the variable is associated with in the Arc box. Then you select the specific variable in

the Variable box. If you click OCL Udef Var, you can then select which Udef variable in the Variable box.

The frame in the middle-right of the dialog box is used to select a second variable in exactly the same way as the box above it.

If you only wish to analyze one variable, you can select NONE in this box. There is more discussion of multi-variable

analysis below.

In the frame at the bottom of the dialog box, you can choose to convert the units of the variable (section 2.9.0 and section

4.7.6 part C). If you do not check Convert Units, then the units of the variable remain unconverted (Arc and node variables

thus remain in primary units. OASIS software does not explicitly assign units to OCL udef variables.). If you do check

Convert Units, then you can use the From and To boxes to specify how to do the conversion. Note that the only units handled

by IHA are CFS, CMS, FT, and M. If you direct OASIS to produce output in units other than these four options, then IHA

will display incorrect unit labels in its plots and tables. Besides the problem of mislabeled units, we can not guarantee that

analyses performed by IHA will be correct if the units dimension is different than IHA’s built-in assumption. Therefore, it is

recommended that you always convert units to CFS, CMS, FT, or M. Note that the OASIS GUI will only be able to do units

conversions that are identified in the Units table (section 4.5.3 part A). If you select more than one variable, the same units

conversion is done on both variables.

Every time you send data to IHA, the OASIS GUI freshly copies the IHA project template folder into the OASIS run folder.

The project template is copied into a subfolder of the run folder, under IHA/Projects. The copied folder is assigned a name

reflecting the OASIS variable that you selected. The GUI then creates a Onevar input file in IHA/HydroData. Then, it

executes Onevar so that two output files (an INI file and an IHB file) are created in the IHA/HydroData folder. These two

files comprise “hydro data” input for IHA. The Onevar input file and the hydro data file are also named to reflect the OASIS

-90-

variable that you selected. If only one output variable is selected, then the project name and the name of the hydro data file

both follow the form RunName==VariableName. For information about multi-variable analysis, see the discussion below.

Next, the OASIS GUI modifies the IHA Project’s INI file, such that the freshly generated hydro data file will be associated

with the freshly created IHA Project. Finally, the OASIS GUI executes IHA. The OASIS GUI passes command-line

parameters to IHA, such that:

 IHA automatically treats the IHA subfolder of your OASIS run as the working directory. (If you subsequently open

IHA without the OASIS GUI, the IHA working directory will be normal again.)

 IHA starts with the newly created project (the one using the post-processed OASIS output) automatically open.

Once IHA is open, it is up to you to run IHA analyses. You may create, delete, or edit analyses, and you may edit the project

as appropriate.

If the time range of the IHA analysis in the template extends beyond the time range of the OASIS run, then the OASIS GUI

modifies the newly created analysis.ini file so that the time range of the IHA analysis does not extend beyond the OASIS run.

This prevents troubles when running IHA. However, if the time range of the OASIS run extends beyond the time range of the

IHA analysis in the template, the OASIS GUI does not extend the time range in the analysis.ini file. Thus, you may choose to

set up your template to analyze a portion of the output of the OASIS run.

There are three possible combinations of data to send to an IHA project:

 one variable from one OASIS run, for a total of one variable

 one variable from two OASIS runs, for a total of two variables

 two variables from one OASIS run, for a total of two variables

Regardless of the number of variables that are sent to an IHA project, the hydro data file is always named with the form

RunName==VariableName. However, the name of the IHA project reflects all the variables that are in the project. Thus, if

the project contains variables from two runs, the project name has the form RunName1~~RunName2==VariableName. If the

project contains two variables from one run, the project name has the form RunName==VariableName1~~VariableName2.

When using OASIS post-processors, it is typical to display multiple variables side by side or on the same axis. IHA does not

display multiple variables in this way. If you send two variables to an IHA project, one variable is always displayed as “pre-

impact” and the other variable is always displayed as “post-impact”. On an IHA-generated plot, the pre-impact variable is

shown on the first part of the x-axis. The post-impact variable is shown on the second part of the x-axis. If the date range of

both runs is the same, then the x-axis of the IHA-generated plot simply repeats the same date range. You may use the IHA

GUI to specify which variable is pre-impact and which is post-impact.

The IHA Analysis menu item does not appear if the parameter _IHA_PostProc in GUI.ini (section 3.3.5) is missing or if its

value is zero. The parameter _IHA_ProjTemplate in GUI.ini should correctly identify a folder that the GUI can copy to

create a fresh IHA Project folder. We suggest that this template folder be located under the OASIS BaseData folder (section

3.3.1), but it can be located wherever you find appropriate. The template folder must contain a Project.ini file. Ideally, the

template also contains one or more analysis folders. If you set up these analysis folders appropriately beforehand, then they

will require no changes when you send OASIS data to IHA. Finally the GUI.ini parameter _IHA_EXE must correctly identify

the path and file name of the IHA7.exe file. The OASIS GUI has been designed to work with version 7.1 of IHA.

See section 6.1.7 part C for information about the :FILEIHB: parameter used in the Onevar input file to generate hydro data

files for IHA.

D. Balance Output

Click on Balance Output in the Output menu to view the file balance.out that is generated every time model.exe runs. See

section 5.2.0 for information about this file. When you click on Balance Output, a dialog box appears that is almost the same

as the dialog box that appears when you click Debug Output. See section 3.6.4 part H for a picture and description of this

dialog box and an explanation of how it works.

-91-

E. OCL Output

Click on OCL Output in the Output menu to view the file OCL.out that is generated every time model.exe runs. See section

5.3.0 for information about this file. When you click on OCL Output, a dialog box appears that is almost the same as the

dialog box that appears when you click Debug Output. See section 3.6.4 part H for a picture and description of this dialog

box and an explanation of how it works.

F. Weight Output

Click on Weight Output in the Output menu to view the file weight.out that is generated every time model.exe runs. See

section 5.4.0 for information about this file. When you click on Weight Output, a dialog box appears that is almost the same

as the dialog box that appears when you click Debug Output. See section 3.6.4 part H for a picture and description of this

dialog box and an explanation of how it works.

G. LP Output

Click on LP Output in the Output menu to view the file LP.out that is generated every time model.exe runs. See section 5.5.0

for information about this file. When you click on LP Output, a dialog box appears that is almost the same as the dialog box

that appears when you click Debug Output. See section 3.6.4 part H for a picture and description of this dialog box and an

explanation of how it works.

H. Debug Output

Click on Debug Output in the Output menu to view the file debug.out that is generated every time model.exe runs. See

section 5.1.0 for information about this file. When you click on Debug Output, the following dialog box appears:

The option buttons on the left allow you to select either position-analysis or simulation runs. In the lower part of the screen is

a list of all the runs. That is, it is a list of all the simulation runs or all the position-analysis runs, depending on which of the

-92-

option buttons is selected. If your project does not include both simulation mode and position-analysis mode, then the option

buttons do not appear. See section 3.4.7 for explanation of the two modes. If a run has not been executed, or if the output

file is not present in the run folder, then the run does not appear in the list.

Select a run from the list and then click the View Output button to view the output for the run. The GUI opens the output file

in a VEDIT window. See section 3.2.0 for information about VEDIT. For your convenience, the open run is selected as a

default whenever this dialog box opens. More often than not, the output you wish to see is from the open run. Of course, if

the open run has not been executed, then it cannot be selected.

You may select more than one run. If you do this and then click the View Output button, the GUI opens all of the output files

in a single instance of VEDIT, with each output file having its own document window.

I. Quick View

Click on Quick View in the Output menu to view a single variable in plot or table form. The Quick-View feature generates

post-processor output, similar to when you click TABLES (section 3.6.4 part A) or PLOTS (section 3.6.4 part B), except that

there does not need to be a pre-existing Onevar-input file or plot-definition file. Instead, you use the Quick-View dialog box

to select a single variable you want to see, and then the GUI automatically creates the Onevar-input file (section 6.1.3) or plot-

definition file (section 6.2.3) for you before it generates the table or plot.

There is more than one way to call the Quick-View dialog box:

 Click Quick View in the Output menu.

 In the schematic (section 3.7.1), right-click on a node or arc and then click Quick View in the menu. The node or arc

that you clicked on will be selected by default in the Quick-View dialog box.

 In the Node Settings dialog box (section 3.8.1) or the Arc Settings dialog box (section 3.8.2), click the Quick View

button. The node or arc that you were viewing will be selected by default in the Quick-View dialog box.

Regardless of how you access it, the dialog box appears like this:

-93-

In the frame at the top of the dialog box, you select which variable you want to see. Variables are selected from three main

groups: Node Output, Arc Output, or OCL Udef Var. If you click Node Output, you can then select which node the variable is

associated with in the Node box. Then you select the specific variable in the Variable box. If you click Arc Output, you can

then select which arc the variable is associated with in the Arc box. Then you select the specific variable in the Variable box.

If you click OCL Udef Var, you can then select which Udef variable in the Variable box.

In the center-left frame, you can choose to view either a plot or a table of the variable. By default, the Sort box has selected

TimeSeries sorting. If you choose instead to do Probability (frequency) sorting (section 6.1.7 part G), then the Order box

appears and you should choose to sort the variable either ASCENDING or DESCENDING (section 6.1.9 part C). By default,

the Step box has selected None. If you want to view the variable at a time step other than the model time step, select another

time step in the Step box, and a step method in the Step Method box (section 6.1.9 part C).

There are some limitations when you do a Quick View on a position-analysis run. When you use Quick View to generate a

plot for a position-analysis run, if the Sort box says Probability then the GUI will not let you enter anything but WholeRun in

the Step box. When you use Quick View to generate a table or plot for a position-analysis run, if the Sort box says

TimeSeries then the GUI expects a pre-defined trace filter (section 9.4.3) to be applied. This trace filter is contained in a file

named QuickViewTraceFilter.txt which must be found in the position-analysis subfolder of the onevar-input folder (section

3.3.1). The GUI does not write a trace-filter section into QuickView.1v, but it uses an :INCLUDE: statement (section 4.7.1

part H) to include QuickViewTraceFilter.txt. The file QuickViewTraceFilter.txt should contain a trace-filter section

(including keyword :TRACEFILTER:) as described in section 6.1.10. It is legal if the file is empty, which would mean that

there is no trace-filter section, and therefore all traces would be presented in output. Any time you wish to apply a different

trace filter to the Quick View output, you can modify this file.

In the center-right frame, you can choose to convert the units of the variable (section 2.9.0 and section 4.7.6 part C). If you

do not check Convert Units, then the units of the variable remain unconverted (Arc and node variables thus remain in primary

units. OASIS software does not explicitly assign units to OCL udef variables.). If you do check Convert Units, then you can

use the From and To boxes to specify how to do the conversion.

The lower-left frame, labeled Table Settings, only appears if you select the table button Table in the center-left frame. The

Table Settings frame contains options for how to present the table output. In these boxes:

 Select either Columns or Tables for the Onevar-output format (section 6.1.7 part F).

 Select a width and number of decimal places in the Format box (section 6.1.9 part C). You can either select an item

for the list or type in a value that is not in the list.

 Select a delimiter character (section 6.1.7 part H) in the Delimiter box, or type in a character that is not in the list.

 In the Repeat Headers box, choose to number of lines between repeated headers (section 6.1.7 part M). You may

select a number from the list or type in a different one.

 Choose whether or not to connect the date to the year with a slash (section 6.1.7 part R).

 On the right side of this frame are check boxes for Blank, Min, Max, Avg, and Total. Check the items which you

would like to appear in the summary rows at the bottom of the table (section 6.1.9 part C).

The lower-right frame gives you the option of saving your Quick-View generated Onevar-input file and/or Plot-definition file

under an alternate file name. If you do not check the box, then the files are always named QuickView.1v and QuickView.mdb.

They are saved in your Onevar-input and Plot-definitions folders (section 3.3.1), but they are overwritten each time you do a

Quick View. If you check the box, then you can type in a file name that will not get overwritten. Type in the file name

without the file name extension (such as .mdb or .1v). This new file can subsequently be accessed by selecting the PLOTS or

TABLES menu items. You can also edit the new files. For example, you could add new tables or expand the value expression

in the table.

Every time you do a Quick View, the GUI writes the onevar-input file (default name: QuickView.1v) from scratch. In

contrast, it never writes the plot-definition file (default name: QuickView.mdb) from scratch. Rather, it creates the plot-

definition file by copying the file QuickView-DoNotErase.zmdb and modifying only a few values in the new file. Therefore,

-94-

QuickView-DoNotErase.zmdb must be present in the plot-definitions folder or folders (section 3.3.1). This is an MS Access

database file, but the filename extension is changed from MDB to ZMDB in order to prevent careless editing of the file and to

prevent the file from being recognized by the GUI when you click PLOTS (section 3.6.4 part B). The file

QuickView-DoNotErase.zmdb is like a template for all plots generated by Quick View. Therefore, if you want all plots

generated by Quick View to have certain characteristics, you can configure QuickView-DoNotErase.zmdb appropriately by

following these steps:

 Change the filename extension of QuickView-DoNotErase.zmdb so that it becomes QuickView-DoNotErase.mdb.

 Modify QuickView-DoNotErase.mdb. You may do this by running Plot or by editing the values with MS Access

(section 6.2.0).

 Change the filename back to QuickView-DoNotErase.mdb.

Quick View only allows you to view variables of the currently open run. However, if you save the Onevar-input file or plot-

definition file with an alternate filename, you may then view the variable in multiple runs by selecting the new file from the

PLOTS or TABLES menu items.

3.6.5 Help MENU

A. Help

If you click Help in the Help menu, the GUI opens the OASIS user manual as a Help document. This document can be

navigated with hypertext and a table of contents. Once it is opened, the Help document is a separate application from the

GUI, and you can close it at any time. The Help item is not available in the menu if the GUI.ini file does not contain the

_WinHelp parameter (section 3.3.5).

B. User Manual (Adobe Acrobat)

If you click User Manual (Adobe Acrobat) in the Help menu, the GUI opens the OASIS user manual as an Adobe Acrobat

(PDF) document. You must have installed the Adobe Acrobat Reader to access this form of the user manual. Once it is

opened, the Acrobat-based user manual a separate application from the GUI, and you can close it at any time. The User

Manual (Adobe Acrobat) item is not available in the menu if the GUI.ini file does not contain the _AcrobatUserManual

parameter (section 3.3.5).

C. Custom Help menu items

Clicking on a custom menu item issues a system command defined by a parameter in the GUI.ini file. Both the text shown in

the menu and the system command that results from a click are defined in GUI.ini. There may be from zero to eight of these

custom menu items. See documentation on the CustomMenu_HelpX parameter in GUI.ini (section 3.3.5).

D. About (Application)

If you click About (Application) in the Help menu, the GUI displays the splash screen. The splash screen is custom-designed

for different clients, and it is used to identify what application OASIS is being used for. Click on the splash screen to close it.

E. About (File Version)

If you click About (File Version) in the Help menu, the GUI displays a window that tells the version numbers of most

important executables in the OASIS package. See section 3.3.6 for more information about file versions. Click on the

window to close it.

-95-

-96-

3.7.0 MAIN-WINDOW INTERFACE DETAILS

3.7.1 Schematic TAB

The schematic is a picture that shows how the system is represented by OASIS (section 2.1.0). In the GUI, the Schematic tab

shows the schematic in an interactive window. You actually change OASIS input when you add, delete, or modify elements

of the interactive schematic. Of course, some elements of the drawing are superficial. For example, the position of a node in

the schematic does not affect model results. You can also add simple drawing objects, text boxes, and images from file to

enhance the appearance of your schematic. The schematic is easily sent to a printer or saved to an image file.

The main controls on the Schematic tab are shown below:

The schematic control is where the schematic is actually displayed. The keybar control is a window from which you can

select symbols to add to the schematic. The buttons are used to edit the schematic.

A. SCHEMATIC BUTTONS

Zoom in and center – After you click this button, you can click on any spot in the schematic to zoom in (make the

picture larger). The spot that you click becomes the center of the view. While the mouse is in this state, the mouse

pointer appears like a magnifying glass with a plus symbol. The mouse remains in this state until you select another

option.

Zoom out and center – After you click this button, you can click on any spot in the schematic to zoom out (make

the picture smaller). The spot that you click becomes the center of the view. While the mouse is in this state, the

mouse pointer appears like a magnifying glass with a minus symbol. The mouse remains in this state until you select

another option.

Scroll with hand tool – After you click this button, the mouse can be used to drag the entire schematic page in the

schematic control. While the mouse is in this state, the mouse pointer appears like a hand. The mouse remains in this

state until you select another option.

-97-

Select tool – After you click this button, the mouse can be used to select objects on the schematic, and then move,

edit, or delete them, etc. This is the default state of the mouse. While the mouse is in this state, the mouse pointer

appears like an arrow.

Add a new text box – After you click this button, the mouse pointer appears like a vertical bar. Click on the

schematic at the location where you want to add a text box. After you click at a location on the schematic, you see a

dialog box in which you can edit the text and its settings. When you have configured the text the way you want, click

the OK button in the dialog box, and the text will then appear in the schematic. When this is done, the mouse returns

to select mode and appears like an arrow. If the text or the text settings are not exactly the way you want, you can

always change them.

Add a new shape – After you click this button, the mouse pointer appears like a cross hair. Click on the schematic

at the location where you want to add a geometric shape, and without releasing the mouse button, drag the selection

box to the desired size of the shape. When you release the mouse button, you see a dialog box in which you set the

type of shape and other parameters. The choices of shape types include rectangle, ellipse, polyline and polygon.

When you have configured the shape the way you want, click the OK button in the dialog box, and the shape will

then appear in the schematic. When this is done, the mouse returns to select mode and appears like an arrow. If the

size of the object or its settings are not exactly the way you want, you can always change them.

Add a new image – After you click this button, the mouse pointer appears like a cross hair. Click on the schematic

at the location where you want to add an image, and without releasing the mouse button, drag the selection box to the

desired size of the image. When you release the mouse button, you see a dialog box in which you can select an

image file to load. After you have selected the appropriate file, click the OK button in the dialog box, and the image

will then appear in the schematic. When this is done, the mouse returns to select mode and appears like an arrow. If

the size of the image or the image file are not exactly what you want, you can always change them.

Page setup – After you click this button, a dialog box appears with numerous parameters for configuring the

schematic page. The dialog box allows you to set parameters for the paper size, the margins, and the paper color.

The schematic is represented on a virtual sheet of paper. For best results, you should set the size of the schematic

page equal to the size of the sheet of paper you intend to print it on. Note that Custom is one of the size options. If

you select Custom , you can enter the size of the paper in pixels, where there are 1440 pixels per inch (567 pixels per

centimeter).

There are margins from the top, left, bottom, and right edges of the paper. You can enter the distance of the margin

from the edge of the paper. You can also set the margin color. The margins appear on the schematic as thin dotted

lines. These dotted lines never show up in a printed version of the schematic. If you uncheck the Margins Visible

box, then the margins will be invisible in the schematic control (although they are still in effect). Note that the GUI

does not prevent you from drawing objects outside of the margins. However, anything outside of the margins will

not be sent to the printer when you print the page.

The dialog box also allows you to select the page color. The page color will be seen as the background color in the

schematic control, although no matter how dark it is, the color does not show up when you send the schematic to a

black-and-white printer.

Align objects – Before clicking this button, you should select the objects in the schematic control (and only those

objects) that you want to align. After clicking the button, a dialog box allows you to select from four horizontal

alignment methods and four vertical alignment methods (if you click None for either horizontal or vertical, then the

objects are not moved along that axis). You may combine vertical and horizontal alignment at the same time. After

you have selected your desired alignment methods, click OK and the GUI will reposition the objects into alignment.

-98-

B. NODE AND ARC CATEGORIES AND THE KEYBAR CONTROL

The keybar is a special control that appears on the lower left of the schematic tab. The keybar displays the node and arc

symbols that you can add to the schematic.

The keybar displays one symbol for every arc category and one symbol for every node category. The node-category symbols

are lined up in a column under the word NODES, and the arc-category symbols are lined up in a column under the word

ARCS. Please note that we are using the word category here to mean a slightly different concept than the node types that are

defined in section 2.1.1. Usually, there is at least one category for every node type. There can be more than one category

corresponding to a node type. Furthermore, OASIS does not recognize any arc types, but you can have multiple arc

categories in your schematic.

Node and arc categories are superficial elements of the schematic. They may have important meanings in differentiating parts

of the system, but assigning a node or arc to a particular category does not affect model input (other than determining the

node type). Thus, model.exe has no automatic means of differentiating the junction nodes of one category from the junction

nodes of another category.

Node and arc categories are user-defined, so you can divide your nodes and arcs into the categories that are appropriate to

your system.

Here is just one possible way to define node and arc categories:

Symbol Category Name Node Type (not applicable to arcs)

 (black & white) Junction Junction

 (blue) Urban Demand Demand

 (black & yellow) Ag Demand Demand

 (blue) Large Reservoir Reservoir

 (black & green) Small Reservoir Reservoir

 (blue) Natural channel

 (purple) Man-made channel

This example shows 1 category of junction nodes, and 2 categories each for demand nodes, reservoir nodes, and arcs.

Presumably, the example set of node and arc categories above has been defined in a way that is meaningful and important to

the modeler or other people who will view the schematic.

Let's suppose you are working on a project that has this set of node and arc categories, and you need to add a demand node to

the system. You can choose either the "Urban Demand" category with the blue symbol, or the "Ag Demand" category with

the yellow symbol. Whichever one you choose will communicate something to people who look at the schematic. However,

it will not make a difference in model input. If there is some universal property (or properties) that distinguishes the "Urban

Demand" nodes from the "Ag Demand" nodes, merely assigning the node category on the schematic will not ensure that

property is entered into OASIS input. For example, the "Urban Demand" nodes may be part of a particular OCL constraint

command, and the "Ag Demand" nodes may be part of a different OCL constraint command. Your use of the different

categories (and therefore different symbols) on the schematic may signify this distinct relationship between different demand

-99-

nodes. However, you must ensure that the new node is entered into the OCL constraint that corresponds to its category,

because the GUI will not do it for you.

To add a node or arc to the schematic, you click on the desired symbol in the keybar and then click on the desired location in

the schematic. See section 3.7.1 part C for more information.

The node and arc categories are defined by the database tables described in section 4.5.9. The GUI does not provide a user-

friendly way of redefining the node and arc categories. Please consult with HydroLogics staff if you need to redefine the

categories.

C. SPECIFIC SCHEMATIC TASKS

To change the size of the page, page margins, or page color: use the Page Settings dialog box. You can do this by

clicking on the Page Setup button (section 3.7.1 part A) or by right-clicking on the schematic control and then clicking Page

Setup.

To change the displayed size of the symbols in the keybar control: right-click on the keybar control (section 3.7.1 part B)

and click Zoom key bar. The zoom level of the keybar does not affect the size of the symbols drawn in the schematic.

To zoom in or out on the schematic: you can use the Zoom in and center and Zoom out and center buttons (section 3.7.1

part A), or you can enter a value into the control box labeled Zoom .

To move the view of the schematic in the schematic control: you can use the Scroll with hand tool button (section 3.7.1

part A). You can also click on the scroll bars on the right and bottom of the schematic control. You can also use the

following keys on the keyboard:

Key Scrolling Motion

[Home] scroll to left edge of the page

[End] scroll to right edge of the page

[Page Up] scroll to the top edge of the page

[Page Down] scroll to the bottom edge of the page

Cursor-Arrow keys move in a small step in the direction indicated

To move any object on the schematic: drag the object with the mouse. You may select multiple objects and then move

them together. The endpoints of arcs move with the nodes they are connected to, but arc bendpoints do not move unless they

are selected. You cannot move an arc without moving the nodes it is connected to. The background image cannot be moved

unless you bring it out of the background by clicking float background image.

When you move the name of an arc or node, you are changing the position of the name object relative to the arc or node. If

the arc or node is moved, then the name is automatically moved with it to stay in the same relative position.

To delete an object: right-click on the object and then select delete. Or you may select the object and then hit the Delete

key. You may select multiple objects and delete them all at once. The background image cannot be deleted unless you bring

it out of the background by clicking float background image. The symbol that represents inflow to a node cannot be deleted

as such, but it will appear or disappear depending on whether there is inflow specified at the node. If you delete a node or an

arc then the record is automatically deleted from the Node or Arc table. The node or arc might also be deleted from every

other database table, depending on what is entered on the General tab of the Preferences dialog box (section 3.6.2 part C).

To align objects: select the objects to be aligned together, then click the Align objects button (section 3.7.1 part A).

-100-

To add a simple geometric shape: click on the Add a new shape button (section 3.7.1 part A) These objects do not affect

the model input, but are for presentation only.

To change the shape type, outline, or fill area of a simple geometric shape: right-click on the shape object and select

Edit.

To change the size of a simple geometric shape: right-click on the shape object and select Resize shape. Markers appear

on the corners and edges of the object. You can drag these markers to resize the object. When you are done resizing, click on

any part of the schematic except the shape you have been resizing, and the mouse will return to select mode.

To reshape a simple geometric shape: (polygon or polyline only) right-click on the shape object and select

Move/Add/Delete Points. Markers appear on the corners and edges of the object.

 To move a corner, move the mouse over the marker on the corner. When the mouse pointer changes into an X, you

can click and drag the corner.

 To add a corner, move the mouse over the edge of the object to which you want to add a corner. When the mouse

pointer changes into a cross with a square center, you can click and drag to the point where you want the new corner.

 To eliminate a corner, move the mouse over the marker on the corner. When the mouse pointer changes into an X,

click and hold down the mouse button. The mouse pointer should change into a cross. At this point you can hit the

Delete key to eliminate the corner.

When you are done editing, click on any part of the schematic except the shape you have been resizing, and the mouse will

return to select mode.

To add a floating image from an image file: click on the Add a new image button (section 3.7.1 part A). Note that the GUI

does not make its own copy of this image. The image file must remain at the path you select.

To change a floating image: right-click on the image object and select Edit.

To change the size of a floating image: right-click on the image object and select Resize Image. Markers appear on the

corners and edges of the object. You can drag these markers to resize the object. When you are done resizing, click on any

part of the schematic except the image you have been resizing, and the mouse will return to select mode. Note that you may

distort the aspect ratio.

To apply the original aspect ratio of a floating image: right-click on the image object and select Restore Aspect Ratio.

To turn a floating image into the background image: right-click on the image object and select Send to background

picture. After that, the image cannot be selected, moved, deleted or edited unless you bring it out of the background. The

background image preserves the size and position it had when you clicked Send to background, so you should set the size and

position of the image before you send it to the background. The background image is behind all other objects. Only one

image can be the background image, so if there is already a background image, you must bring it out of the background before

another image can be sent to the background.

To bring an image out of the background: right-click on the background image or any part of the schematic control that is

not on an object. Select Float background image. After that, the image becomes a floating image object like any other.

To add a floating text: click on the Add a new text box button (section 3.7.1 part A).

To change a floating text: right-click on the text object and select Edit.

To add a new node to the system, click on the symbol in the keybar control (section 3.7.1 part B) that corresponds to the

category of the new node. The symbol that you clicked in the keybar is temporarily highlighted in pink to denote its status as

the node category you are adding. The mouse pointer appears like a cross hair. Click on the location in the schematic control

where you want the new node located. Then a dialog box appears with controls for some of the basic parameters for the new

node. You must enter a node number and a node name. After you have set the appropriate parameters, click OK and the new

node will appear on the schematic. The GUI automatically adds the new node to the Node table (section 4.5.3 part B) and

-101-

sets the fields in that table, but it does not add the node to any other input tables. The mouse returns to select mode and the

pointer appears like an arrow.

To add a new arc to the system, click on the symbol in the keybar control (section 3.7.1 part B) that corresponds to the

category of the new arc. The symbol that you clicked in the keybar is temporarily highlighted in pink to denote its status as

the arc category you are adding. The mouse pointer appears like a cross hair. Click on the node in the schematic control that

is to be the upstream node of your new arc. This node is then highlighted in pink to denote its status. Next, click on the node

that is to be the downstream node of your new arc. Then a dialog box appears with controls for some of the basic parameters

for the new arc. You must enter an arc name. After you have set the appropriate parameters, click OK and the new arc will

appear on the schematic. The GUI automatically adds the new arc to the Arc table (section 4.5.3 part C) and sets the fields in

that table, but it does not add the arc to any other input tables. The mouse returns to select mode and the pointer appears like

an arrow.

To create a dummy arc: add an arc as described above, but in the dialog box, check the box labeled Dummy Arc. When this

box is checked, the arc is for display only and is ignored by the model.

To change the parameters of a node or arc: double-click on the node or arc, or on the text object of the name of the node

or arc. Note that the parameters controlled through the dialog boxes here are limited to the parameters in the Node and Arc

tables. If you change the number of a node, the GUI does not change the node number in tables other than the Node table and

the Arc table. For example, if you have reservoir node 130, and you change its number to 134, then you will have to change

the number from 130 to 134 in the Reservoir table because the GUI does not do it for you.

To hide an arc: double-click on the arc, and check the Hide Entire Arc box. The arc is still in the model, but it is not drawn

on the schematic.

To unhide an arc: When the arc is hidden, it cannot be selected on the schematic, so you must go to the Arc table on the Arc

tab (section 3.7.5). Find the row in the table for the arc, and then uncheck the box in the Hide column.

To add or remove the arrow representing inflow to a node: inflow to a node from outside the system (section 2.1.3) is

represented by an arrow that points into the node symbol. If there is inflow at the node, then the GUI draws this arrow, and if

there is no inflow, then the GUI does not draw an arrow. To remove the arrow, double-click on the node and then select None

in the Data Source of Inflow box. To add the arrow, select one of the other options in the Data Source of Inflow box.

To reposition the arrow representing inflow to a node: At the foot of the arrow is a small circle that can be dragged with

the mouse. In fact, you can select this small circle along with other objects to move them together or to align them. We have

found that it is sometimes difficult to select the small circle, and have been unable to correct the problem. If you have

difficulty selecting the object, try zooming into the schematic until the circle is large enough to click on.

To change the order in which objects appear on top of each other: right-click on one of the objects in question and select

either Move to Front or Move to Back.

To keep an existing arc but connect it to a different node or nodes: right-click on the arc, and select Change upstream

node or Change downstream node. The arc and the node that won't change are temporarily highlighted in pink. Click on the

node that you want the arc to be connected to. When that is done, the GUI redraws the arc and changes the entry in the Arc

table. The GUI does not change the node number in tables other than the Arc table. For example, if you have arc 130.155

and you reconnect the arc so that 222 is the downstream node, then you will have to change the number from 155 to 222 in

the Minimum Flow table because the GUI does not do it for you.

To add a bend in an arc: right-click on the arc, and select Add a bend in arc. The mouse pointer changes to a black circle

with a plus sign in the center. Click on the spot where you want the corner of the bend. The GUI then redraws the arc with a

new bend, and the mouse pointer changes back to an arrow. If the corner is not exactly where you want it, you can always

move it. An arc can have up to three bends.

To remove a bend from an arc: right-click on the arc, and select Delete a bend in arc. The mouse pointer changes to a

black circle with a minus sign in the center. Click on the corner of the bend that you want to remove. The GUI then redraws

the arc without the bend, and the mouse pointer changes back to an arrow.

-102-

To rotate the name of an arc: double-click on the arc, and enter the desired angle into the Name Rotation box. The rotation

value is degrees counter-clockwise from horizontal

To rotate the name of a node: double-click on the node, and enter the desired angle into the Name Rotation box. The

rotation value is degrees counter-clockwise from horizontal.

To quickly identify a node or arc: let the mouse pointer rest over the node or arc. The name and number of the node or arc

will appear in the status bar at the bottom of the screen. This can be useful if the schematic is zoomed out such that text on

the schematic is hard to read.

-103-

3.7.2 Setup TAB

The Setup tab contains a miscellany of features that were conceived as a sort of "control center" for the GUI. For some

applications, the controls on the Setup tab are the controls that are used for the most common tasks, so the controls on other

tabs need to be accessed only infrequently. However, because of the wide range of applications for OASIS, the Setup tab is

not such an effective command center in all cases. Some users will find it very useful, while others might not.

A. TIME RANGE OF RUN

There are text boxes in the upper left of the Setup tab, with the labels Start of Run and End of Run. This is an interface to the

Range table in the input database (section 4.5.2 part A). The same data may also be entered in the Simulation Time Range

box on the Time tab (section 3.7.3).

B. CONTROL BUTTONS

A series of buttons appear on the right-hand side of the Setup tab. They are:

 Edit Notes. Clicking this button is exactly the same as selecting Notes in the Edit menu (section 3.6.2 part B).

 RUN. Clicking this button is exactly the same as selecting Execute OASIS Model in the Run menu (section 3.6.3).

 Tables. Clicking this button is the same as selecting TABLES in the Output menu (section 3.6.4 part A). However,

the Edit Files button and the option buttons do not appear in the dialog box.

 Plots. Clicking this button is exactly the same as selecting PLOTS in the Output menu (section 3.6.4 part B).

However, the Edit Files button and the option buttons do not appear in the dialog box.

 Balance Sheet. Clicking this button is exactly the same as selecting Balance Output in the Output menu (section

3.6.4 part D). However, the option buttons do not appear in the dialog box.

 Quick View. Clicking this button is exactly the same as selecting Quick View in the Output menu (section 3.6.4 part

I).

C. OCL FILES

A control box listing all of the files in the OCL files can appear on the Setup tab. This is an exact duplicate of the box that

appears on the OCL tab (section 3.7.6). You determine whether or not this control appears by setting an option in the

Preferences dialog box (section 3.6.2 part C).

D. INITIAL CONDITIONS

An input control for the initial conditions table can appear on the Setup tab. This is an exact duplicate of the control that

appears on the Node tab (section 3.7.4). The control is an interface to the Initial Conditions table in the input database

(section 4.5.6). You determine whether or not this control appears from the Preferences dialog box (section 3.6.2 part C).

-104-

E. GAMING PARAMETERS

If the Gaming Parameters check box in the Preferences dialog box (section 3.6.2 part C) is checked, then the GUI displays

controls for gaming parameters in the lower left of the Setup tab. These controls are illustrated below, along with the Start of

Run and End of Run parameters.

Gaming is a process where water managers and/or other interested parties can step

through the operation of the simulated system one time step at a time. After

executing the model for one time step, they can analyze the state of the simulated

system and the decide specific operations for the coming time step. The model input

is then set accordingly and the model is executed for the next time step.

The principles behind gaming are still valid for running several time steps that span

a small time period between decision points. For example, if the time-step is daily,

it might make sense to set the operating decisions and let the model run for 7 days (7

time steps) before setting new decisions.

Gaming with OASIS can be done by setting the proper parameters in the Range

table (section 4.5.2 part A), including use of continuation mode (section 2.8.3). In

between time steps, the game participants can change model input. The gaming-

parameter controls displayed in the GUI are designed to manage this process and

make it easier for the modeler.

The gaming-parameters controls in the GUI are only capable of handling daily-

time-step modeling. If you wish to do gaming runs at weekly, monthly, or other

time-step sizes, you should not use these gaming parameters controls, but rather edit

the Range table input directly.

If the box labeled Automatically Apply Gaming Parameters is unchecked, then the GUI does no special handling for gaming

runs. In other words, it runs as if the gaming parameters were not displayed. Furthermore, the rest of the gaming parameter

controls are invisible when the box is unchecked. If the box labeled Automatically Apply Gaming Parameters is checked,

then the rest of the gaming parameters are enabled, and the GUI will automatically manipulate the start and end times of the

run every time you execute the model.

Use the option buttons to tell the GUI when the continuation run begins. The idea of gaming is that you will resume

simulation on the time step after the last step of the previous execution. To do this check the button labeled Continue on step

after break. For your convenience, the step that will be used to as the start of the continuation run is displayed in parentheses.

If you wish to begin the continuation run on a step other than this, check the Continue on other step button and enter the date

(in year - month - day format) into the box. Your selection in these buttons determines what the GUI writes into the

CONTINUE record of the Range table.

The GUI automatically sets the end of run based on an entry in the box labeled Number of Time Steps to Continue. When you

execute the model, the continuation run will run for the given number of steps, and then stop so that you can evaluate the

decision for the next execution. This control and the selected option button (Continue on step after break/Continue on other

step) determine what the GUI writes into the STOP record of the Range table.

We recommend you create backups as you do to gaming process, in case you find a mistake or simply want to try a different

operating scenario from some earlier stage of the process. If the box labeled Automatically Create Backup After Run is

checked, then the GUI makes a copy of the run folder after model.exe has finished executing. The name of the backup folder

is composed of the entries in the two boxes, Fixed Part of Name and Counter in Name. For example, if the entries are

Bak_SeriesA_ and 020, then the backup folder is named Bak_SeriesA_020. You may change either of these entries any time.

Whatever number is in the box Counter in Name will be incremented after the backup has been created. You may wish to

keep notes of what is in each backup. If you want to go to one of the backup gaming runs, simply open it by clicking on File,

then Open Run (section 3.6.1 part B).

-105-

F. CUSTOM FEATURES

Some applications of OASIS include custom controls in the GUI. It is common for such custom controls to be shown on the

Setup tab. The custom controls are determined by the GUI plugin file, OASISGUI_Plugin.ocx, which must be in the

executables folder (section 3.3.3). Different projects may use different versions of OASISGUI_Plugin.ocx. Section 3.3.6

describes how you can determine what version of OASISGUI_Plugin.ocx you have.

Custom features are not described in this user manual.

3.7.3 Time TAB

The Time, Node, Arc, OCL, and Misc tabs provide control interfaces to the database tables of the open run. These controls

can be used instead of editing the tables with MS Access. The details of these tables are covered in Chapter 4, so in this

section we only note the reference to the section in Chapter 4 and any features of the control in the GUI that are not explained

in Chapter 4.

A. SIMULATION TIME RANGE

On the left side of the Time tab is the frame labeled Simulation Time Range. This frame contains the interface control to the

Range table (section 4.5.2 part A). The start and stop times and the continuation time can all be edited in this table.

Ordinarily, you should not edit the break time. Note that the start and stop time can also be controlled with the time range

controls on the Setup tab. Also, the continuation time and stop time may be controlled by the gaming controls on the Setup

tab (section 3.7.2). Many users will find the controls on the Setup tab to be easier to use for most purposes.

The FLAG field of the Range table is not shown in the table-interface control. Instead, there is a check box labeled Interpret

the Start Time as the Beginning of the time step. This is in fact a control for the FLAG field, and its meaning should be clear.

B. TIME STEPS

On the right side of the Time tab is a frame labeled Time Steps. All the controls needed to define the time steps of simulation

are in this frame, which is illustrated below:

The Beginning of Year control box is an interface to the Year Scheme input table (section 4.5.2 part C). Whichever month

you select in this box is the month on which the year officially begins according to OASIS's year scheme (section 2.8.5).

-106-

The Type of Time Step control box is an interface to the Time Step field of the Run input table (section 4.5.2 part B).

The control labeled Steps Table is an interface to the Steps input table (section 4.5.2 part D). This control only visible when

you select DSS or CYCLE in the Type of Time Step box.

The controls labeled DSS File and DSS Record are only visible when you select DSS in the Type of Time Step box. These

controls are your interface to the DSS Steps input table.

C. POSITION ANALYSIS

On the lower right of the Time tab is a frame labeled Position Analysis, is visible if and only if the GUI is in position-analysis

mode (section 3.4.7). This frame contains all the controls specifically needed to define the position-analysis traces. The

frame is illustrated below:

The Type of Position Analysis control box is an interface to the PosAnal DataSource field in the Run input table (section

4.5.2 part B). The Number of time steps per trace control box is an interface to the PosAnal NumSteps field in the Run input

table (section 4.5.2 part B).

The Type of Position Analysis Traces control box is an interface to the PosAnalysis input table (section 4.5.2 part F).

-107-

3.7.4 Node TAB

The Time, Node, Arc, OCL, and Misc tabs provide control interfaces to the database tables of the open run. These controls

can be used instead of editing the tables with MS Access. The details of these tables are covered in Chapter 4, so in this

section we only note the reference to the section in Chapter 4 and any features of the control in the GUI that are not explained

in Chapter 4.

All of the tables on the Node tab have an identifying Node Number field in the database. The GUI allows you to view the

node number, the node name, or both in identifying fields. You determine which identifying fields are shown using the Table

Options tab of the Preferences dialog box (section 3.6.2 part C).

The Node tab includes many table-interface controls. Only one of these may be viewed at a time. Click on the option button

for the table that you want to view. There are option buttons for the following tables.

Label in GUI Name in Database Reference Notes

Node Node sec 4.5.3 part B You can edit any existing record, but you can not add or delete
records through this control. Instead, add or delete items on the
schematic control (section 3.7.1).

All fields can be edited from the schematic control by double-
clicking on the node symbol. In the table control, the Type field
is shown in blue text but cannot be edited directly. Instead, edit
the Category field. The category field corresponds the
categories displayed on the keybar control. Changes made in the
table control are automatically updated in the schematic control.

Inflow Pattern Inflow Pattern sec 4.5.5 part A

Demand Demand sec 4.5.4 part A

Demand Pattern Demand Pattern sec 4.5.4 part B

Demand Weights Weight: Demand sec 4.5.7 part C

Reservoir Reservoir sec 4.5.3 part H

Reservoir Rules Reservoir Rules sec 4.5.3 part I

Reservoir SAE Reservoir S-A-E sec 4.5.3 part J

Initial Condition Initial Condition sec 4.5.6

Reservoir Weights Weight: Storage sec 4.5.7 part B

Net Evaporation Evaporation sec 4.5.3 part K

Net Evaporation
Pattern

Evaporation Pattern sec 4.5.3 part L

-108-

3.7.5 Arc TAB

The Time, Node, Arc, OCL, and Misc tabs provide control interfaces to the database tables of the open run. These controls

can be used instead of editing the tables with MS Access. The details of these tables are covered in Chapter 4, so in this

section we only note the reference to the section in Chapter 4 and any features of the control in the GUI that are not explained

in Chapter 4.

All of the tables on the Arc tab have an identifying U/S Node and D/S Node fields in the database. The GUI allows you to

view the node numbers, the node names, the arc names, a combination of two of those, or all three. You determine which

identifying fields are shown using the Table Options tab of the Preferences dialog box (section 3.6.2 part C).

The Arc tab includes many table-interface controls. Only one of these may be viewed at a time. Click on the option button

for the table that you want to view. There are option buttons for the following tables.

Label in GUI Name in Database Reference Notes

Arc Arc sec 4.5.3 part C You can edit any existing record, but you can not add or delete
records through this control. Instead, add or delete items on the
schematic control (section 3.7.1).

All fields can be edited from the schematic control by double-
clicking on the arc symbol. The category field corresponds the
categories displayed on the keybar control. Changes made in the
table control are automatically updated in the schematic control.

Minimum Flow Minimum Flow sec 4.5.3 part E

Maximum Flow Maximum Flow sec 4.5.3 part F

Max Reverse Flow Maximum Reverse
Flow

sec 4.5.3 part G

Arc Weights Weight: Arc sec 4.5.7 part A

3.7.6 OCL TAB

The Time, Node, Arc, OCL, and Misc tabs provide control interfaces to the database tables of the open run. These controls

can be used instead of editing the tables with MS Access. The details of these tables are covered in Chapter 4, so in this

section we only note the reference to the section in Chapter 4 and any features of the control in the GUI that are not explained

in Chapter 4.

The OCL tab includes two table-interface controls. Only one of these may be viewed at a time. Click on the option button for

the table that you want to view. There are option buttons for the following tables.

Label in GUI Name in Database Reference Notes

OCL Lookup Lookup sec 4.5.8 part A

OCL Pattern Pattern sec 4.5.8 part B

OCL Constants Constants sec 4.5.9 part C The GUI only shows this table if the option is selected on the
General tab of the Preferences dialog box (section 3.6.2 part C).

In the lower left of the OCL tab is a list control labeled OCL Command Files. In this tab is a list of every file in the OCL

folder of your run folder (section 3.3.7), which matches the filter specified by the OCL_Filter parameter in the GUI.ini file

(section 3.3.5). If you double-click on a file in the list, the GUI opens that file in VEDIT (section 3.2.0). You may select

-109-

more than one file when you double-click, in which case the GUI opens all selected files as separate documents in a single

instance of VEDIT. If you wish, you may then change the file(s) and save your changes through the VEDIT interface.

If there are any OCL files used by your run that are not in this folder or do not match the OCL_Filter parameter, they are not

shown in the list. Any OCL files in this folder that match the OCL_Filter parameter will be displayed in the list, whether or

not they are actively-used OCL files. Therefore, to avoid confusion, we recommend you put all active OCL files in this folder

and do not put any non-OCL files or non-active OCL files in this folder.

See section 2.5.0 for more information about OCL.

3.7.7 Misc TAB

The Time, Node, Arc, OCL, and Misc tabs provide control interfaces to the database tables of the open run. These controls

can be used instead of editing the tables with MS Access. The details of these tables are covered in Chapter 4, so in this

section we only note the reference to the section in Chapter 4 and any features of the control in the GUI that are not explained

in Chapter 4.

The Misc tab includes many table-interface controls. Only one of these may be viewed at a time (the Configure Balance

Sheet button actually displays two tables). Click on the option button for the table that you want to view. There are option

buttons for the following tables.

Label in GUI Name in Database Reference Notes

Output Options n/a This does not show an input table. See discussion
below.

Units Definitions Units Definitions sec 4.5.3 part A See discussion of the Units Wizard below.

Configure Balance Sheet Balance Sheet Columns
and Balance Sheet Rows

sec 4.5.3 part N
and
sec 4.5.3 part O

Declare Timeseries Declare Timeseries sec 4.5.3 part P

The Output Options button displays a set of controls that determine what output is generated by model.exe. These controls

determine what flags are written to model.cf (section 4.3.0). See section 2.6.0 for an introduction to the output files, and see

Chapter 5 for complete documentation of the output files. If you choose to generate the optional output, it might take

noticeably longer to execute the model, and the resulting files may take large amounts of disk space. If you choose not to

generate an output file, then of course you will not be able to view it from the GUI's Output menu. As long as the run is not

locked (section 3.4.9), you can always turn on a flag and re-execute the model.

When you click the Units Definitions button, you see the control interface to the Units Definitions input table. You also see a

special button labeled Units Wizard. When you press this button, the GUI displays a special dialog box that helps you

understand the input for defining units. Because it is much easier to understand, we recommend you enter your input into this

Units-Wizard dialog box rather than enter it into the basic table-interface control. See section 2.9.0 for more explanation of

units of measurement in OASIS.

-110-

3.8.0 SPECIAL DIALOG BOXES

The special dialog boxes described below provide convenient ways of editing and analyzing input data.

3.8.1 Node Settings Dialog Box

The Node Settings dialog box provides a single view of all standard input data that is associated with a single node. It also

contains settings for displaying the node on the schematic. To access this dialog box, on the schematic (section 3.7.1) find the

node you want to edit or analyze and double-click on it. Alternatively, you can right-click on it and select Edit from the

menu.

For junction nodes, the Node Settings dialog box appears like this:

All controls on the Node Settings dialog box for junction nodes are also found on the dialog box for demand nodes and

reservoir nodes. The controls are:

 Node Number - You may assign or change the number that identifies the node. This control is linked to the Node

Number field in the Node Table (section 4.5.3 part B).

 Node Name - You may assign or change the name of the node. This control is linked to the Name field in the Node

Table (section 4.5.3 part B).

 Hide Name - The node name is shown on the schematic unless this box is checked. This control is linked to the

HideName field in the Node Table (section 4.5.3 part B).

 Name Rotation - The name is shown on the schematic rotated in degrees counter-clockwise from horizontal. This

control is linked to the Rotation_Angle field in the Node Table (section 4.5.3 part B).

 Inflow Category - The inflow category determines the appearance of the arrow on the schematic that indicates

inflow to the node. Note that changing the value in this box only changes the appearance on the schematic – it does

not automatically change any properties of the inflow. This control is linked to the InflowType field in the Node

Table (section 4.5.3 part B).

 Data Source of Inflow - This box tells OASIS how to determine the value of the inflow to the node. This control

is linked to the Inflow field in the Node Table (section 4.5.3 part B). If the box contains Pattern, then you can edit

the values of inflow by pressing the Edit Inflow Pattern button (see below). If the box contains Time Series, then

you can edit the values of inflow using HecDssVue (section 4.6.0 and section 4.6.4 part A). If the box contains

OCL, then the values of inflow are determined by an OCL Set command (section 2.5.1 part C). If the box contains

None, then the inflow to the node is zero and no arrow symbolizing the inflow is drawn on the schematic.

 Edit Inflow Pattern - This button is only shown if the Data Source of Inflow box says Pattern. Pressing this

button opens the Inflow Pattern dialog box (section 3.8.3), allowing you to view or edit the values of the inflow to

the current node.

 Node Category - The node category determines the appearance of the node symbol on the schematic. It also

determines the node type (junction, demand, or reservoir; see section 2.1.1). Note that changing the value in this box

only changes the node type and the appearance on the schematic – it does not automatically change any other

-111-

properties of the node. This control is directly linked to the SubType field and indirectly linked to the Type field in

the Node Table (section 4.5.3 part B).

 Quick View - Pressing this button summons the Quick View dialog box (section 3.6.4 part I), and the current node is

initially selected in the dialog box.

For demand nodes, the Node Settings dialog box appears like this:

Many of the controls are also found on the Node Settings dialog box for junction nodes. See above for descriptions of these

controls. The controls that are unique to demand nodes are:

 Data Source of Demand - This box tells OASIS how to determine the value of the demand at the node. This

control is linked to the Demand Type field in the Demand Table (section 4.5.4 part A). If the box contains Pattern,

then you can edit the values of demand by pressing the Edit Demand Pattern button (see below). If the box contains

Time Series, then you can edit the values of demand using HecDssVue (section 4.6.0 and section 4.6.3 part A). If

the box contains OCL, then the values of demand are determined by an OCL Set command (section 2.5.1 part C).

 Edit Demand Pattern - This button is only shown if the Data Source of Demand box says Pattern. Pressing this

button opens the Demand Pattern dialog box (section 3.8.3), allowing you to view or edit the values of the demand

at the current node.

 Demand Weight - The weight on meeting demand at this node. This control is linked to the Wt field in the Weight:

Demand Table (section 4.5.7 part C).

 Pri - The priority level of weight on meeting demand at this node. This control is linked to the Pri field in the

Weight: Demand Table (section 4.5.7 part C).

-112-

For reservoir nodes, the Node Settings dialog box appears like this:

Many of the controls are also found on the Node Settings dialog box for junction nodes. See above for descriptions of these

controls. The controls that are unique to reservoir nodes are:

 Dead Storage - The storage or elevation value that demarcates dead storage (the boundary of the A and B zones) in

the reservoir. The first control is linked to the Dead Storage field and the second control is linked to the Dead Stor

Units field in the Reservoir Table (section 4.5.3 part H).

 Data Source of Lower Rule - This box tells OASIS how to determine the value of the lower rule curve (the

boundary of the B and C zones) for the reservoir node. This control is linked to the Lower Rule field in the

Reservoir Table (section 4.5.3 part H). If the box contains Pattern, then you can edit the values of the lower rule

curve by pressing the Edit Reservoir Rule Pattern button (see below). If the box contains Time Series, then you can

edit the values of the lower rule curve using HecDssVue (section 4.6.0 and section 4.6.2 part F). If the box contains

OCL, then the values of the lower rule curve are determined by an OCL Set command (section 2.5.1 part C). If the

box contains None, then there is no lower rule and the reservoir is only modeled with a single storage zone.

 Data Source of Upper Rule - This box tells OASIS how to determine the value of the upper rule curve (the

boundary of the C and D zones) for the reservoir node. This control is linked to the Upper Rule field in the

Reservoir Table (section 4.5.3 part H). If the box contains Pattern, then you can edit the values of the upper rule

curve by pressing the Edit Reservoir Rule Pattern button (see below). If the box contains Time Series, then you can

edit the values of the upper rule curve using HecDssVue (section 4.6.0 and section 4.6.2 part E). If the box contains

OCL, then the values of the upper rule curve are determined by an OCL Set command (section 2.5.1 part C). If the

box contains None, then there is no upper rule and the reservoir is only modeled with a single storage zone.

 Edit Reservoir Rule Pattern - This button is only shown if the Data Source of Lower Rule box says Pattern.

Pressing this button opens the Reservoir Rule Pattern dialog box (section 3.8.3), allowing you to view or edit the

values of the upper and lower rule curves at the current node.

 Max Storage - The maximum storage or elevation value of the reservoir. The first control is linked to the Max

Storage field and the second control is linked to the Max Stor Units field in the Reservoir Table (section 4.5.3 part

H).

 INIT STORAGE - The storage or elevation value of the reservoir at the beginning of the first simulated time step.

The first control is linked to the Storage field and the second control is linked to the Storage Units field in the Initial

Condition Table (section 4.5.6).

-113-

 Data Source of Evaporation - This box tells OASIS how to determine the value of the evaporation at the node.

This control is linked to the Evaporation Type field in the Evaporation Table (section 4.5.3 part K). If the box

contains Pattern, then you can edit the values of the evaporation rate by pressing the Edit Evaporation Pattern

button (see below). If the box contains Time Series, then you can edit the values of the evaporation rate using

HecDssVue (section 4.6.0 and section 4.6.2 part D). If the box contains OCL, then the values of evaporation are

determined by an OCL Set command (section 2.5.1 part C). If the box contains None, then the evaporation rate at

the node is zero.

 Edit Evaporation Pattern - This button is only shown if the Data Source of Evaporation box says Pattern.

Pressing this button opens the Evaporation Pattern dialog box (section 3.8.3), allowing you to view or edit the

values of the evaporation rate at the current node.

 Edit Reservoir Storage / Area / Elevation Data - Pressing this button opens the Reservoir Storage-Area-

Elevation dialog box (section 3.8.4), allowing you to view or edit the values of the table that relates storage, area,

and elevation at the current reservoir node.

 Weight - There are four boxes under the heading Weight, each labeled for A, B, C, or D zone. These are the

weights on having water in storage in the respective zones. These controls are linked to the A Wt, B Wt, C Wt, and D

Wt fields in the Weight: Storage Table (section 4.5.7 part B).

 Pri - There are four boxes under the heading Pri, each labeled for A, B, C, or D zone. These are the priority levels

on the weights on having water in storage in the respective zones. These controls are linked to the A Pri, B Pri, C

Pri, and D Pri fields in the Weight: Storage Table (section 4.5.7 part B).

3.8.2 Arc Settings Dialog Box

The Arc Settings dialog box provides a single view of all standard input data that is associated with a single arc. It also

contains settings for displaying the arc on the schematic. To access this dialog box, on the schematic (section 3.7.1) find the

arc you want to edit or analyze and double-click on it. Alternatively, you can right-click on it and select Edit from the menu.

The Arc Settings dialog box appears like this:

The controls are:

 Arc Name - You may assign or change the name of the arc. This control is linked to the Name field in the Arc

-114-

Table (section 4.5.3 part C).

 US Node Number, US Node Name, DS Node Number, DS Node Name - These fields identify the arc that the

dialog box describes, but you can not edit them in the dialog box. If you wish to attach the arc to a different node or

nodes, you must do it through the schematic control (section 3.7.1). These controls are linked to the U/S Number

and D/S Number fields in the Arc Table (section 4.5.3 part C).

 Hide Name - The arc name is shown on the schematic unless this box is checked. This control is linked to the

HideName field in the Arc Table (section 4.5.3 part C).

 Hide Entire Arc - The arc is shown on the schematic unless this box is checked. This control is linked to the Hide

field in the Arc Table (section 4.5.3 part C).

 Name Rotation - The name is shown on the schematic rotated in degrees counter-clockwise from horizontal. This

control is linked to the Rotation_Angle field in the Arc Table (section 4.5.3 part C).

 Category - The arc category determines the appearance of the arc symbol on the schematic. Note that changing the

value in this box only changes the appearance on the schematic – it does not automatically change any other

properties of the arc. This control is linked to the SubType field in the Node Table (section 4.5.3 part C).

 Quick View - Pressing this button summons the Quick View dialog box (section 3.6.4 part I), and the current arc is

initially selected in the dialog box.

 Data Source of Max Flow - This box tells OASIS how to determine the value of the maximum flow at the node.

This control is linked to the Max Flow field in the Arc Table (section 4.5.3 part C). If the box contains Pattern, then

you can edit the values of max flow by pressing the Edit Flow Pattern button (see below). If the box contains Time

Series, then you can edit the values of max flow using HecDssVue (section 4.6.0 and section 4.6.2 part B). If the

box contains OCL, then the values of max flow are determined by an OCL Set command (section 2.5.1 part C). If

the box contains None, then the max flow at the arc is zero.

 Edit Max Flow Pattern - This button is only shown if the Data Source of Max Flow box says Pattern. Pressing

this button opens the Max Flow Pattern dialog box (section 3.8.3), allowing you to view or edit the values of the

max flow at the current node.

 Data Source of Min Flow - This box tells OASIS how to determine the value of the minimum flow at the node.

This control is linked to the Min Flow field in the Arc Table (section 4.5.3 part C). If the box contains Pattern, then

you can edit the values of min flow by pressing the Edit Min Flow Pattern button (see below). If the box contains

Time Series, then you can edit the values of min flow using HecDssVue (section 4.6.0 and section 4.6.2 part A). If

the box contains OCL, then the values of min flow are determined by an OCL Set command (section 2.5.1 part C). If

the box contains None, then the min flow at the arc is zero.

 Edit Min Flow Pattern - This button is only shown if the Data Source of Min Flow box says Pattern. Pressing

this button opens the Min Flow Pattern dialog box (section 3.8.3), allowing you to view or edit the values of the min

flow at the current node.

 Data Source of Max Reverse Flow - This box tells OASIS how to determine the value of the maximum reverse

flow at the node. This control is linked to the MaxRev Flow field in the Arc Table (section 4.5.3 part C). If the box

contains Pattern, then you can edit the values of max reverse flow by pressing the Edit Max Rev Pattern button (see

below). If the box contains Time Series, then you can edit the values of max reverse flow using HecDssVue (section

4.6.0 and section 4.6.2 part C). If the box contains OCL, then the values of max reverse flow are determined by an

OCL Set command (section 2.5.1 part C). If the box contains None, then the max reverse flow at the arc is zero.

 Edit Max Rev Pattern - This button is only shown if the Data Source of Max Reverse Flow box says Pattern.

Pressing this button opens the Maximum Reverse Flow Pattern dialog box (section 3.8.3), allowing you to view or

edit the values of the max reverse flow at the current node.

 Weight - There are three boxes under the heading Weight, each labeled for Total, B-Zone, or A-zone. These are

the weights on water flowing through the arc in the respective zones. These controls are linked to the Total Wt, B

Wt, and A Wt fields in the Weight: Arc Table (section 4.5.7 part A).

 Pri - There are three boxes under the heading Pri, each labeled for Total, B-Zone, or A-zone. These are the

priority levels on the weights on water flowing through the arc in the respective zones. These controls are linked to

the Total Pri, B Pri, and A Pri fields in the Weight: Arc Table (section 4.5.7 part A).

-115-

3.8.3 Pattern Dialog Box

The pattern dialog box provides a way of viewing and editing a single pattern input variable. In most cases, this is more

convenient than viewing or editing the pattern variable in the whole table with other pattern variables. The dialog box

provides an easy way to change the name or association of the data, or to copy pattern values from one variable to another.

See section 4.5.1 for information about pattern tables.

To access this dialog box

 Inflow Pattern Table (section 4.5.5 part A) - On the Node Settings dialog box (section 3.8.1), press the Edit Inflow

Pattern button. Alternatively, with the Inflow Pattern table showing on the Node tab (section 3.7.4), click on the

menu Edit > Edit Single Pattern.

 Demand Pattern Table (section 4.5.4 part B) - On the Node Settings dialog box (section 3.8.1), press the Edit

Demand Pattern button. Alternatively, with the Demand Pattern table showing on the Node tab (section 3.7.4),

click on the menu Edit > Edit Single Pattern.

 Reservoir Rules Table (section 4.5.3 part I) - On the Node Settings dialog box (section 3.8.1), press the Edit

Reservoir Rule Pattern button. Alternatively, with the Reservoir Rules table showing on the Node tab (section

3.7.4), click on the menu Edit > Edit Single Pattern.

 Evaporation Pattern Table (section 4.5.3 part L) - On the Node Settings dialog box (section 3.8.1), press the Edit

Evap Pattern button. Alternatively, with the Net-Evaporation Pattern table showing on the Node tab (section 3.7.4),

click on the menu Edit > Edit Single Pattern.

 Minimum Flow Pattern Table (section 4.5.3 part E) - On the Arc Settings dialog box (section 3.8.2), press the

Edit Min Flow Pattern button. Alternatively, with the Minimum FIow table showing on the Arc tab (section 3.7.5),

click on the menu Edit > Edit Single Pattern.

 Maximum Flow Pattern Table (section 4.5.3 part F) - On the Arc Settings dialog box (section 3.8.2), press the

Edit Max Flow Pattern button. Alternatively, with the Maximum FIow table showing on the Arc tab (section 3.7.5),

click on the menu Edit > Edit Single Pattern.

 Maximum Reverse Flow Pattern Table (section 4.5.3 part G) - On the Arc Settings dialog box (section 3.8.2),

press the Edit Max Rev Pattern button. Alternatively, with the Max Reverse FIow table showing on the Arc tab

(section 3.7.5), click on the menu Edit > Edit Single Pattern.

 OCL Pattern Table (section 4.5.8 part B) - With the OCL Pattern table showing on the OCL tab (section 3.7.6),

click on the menu Edit > Edit Single Pattern.

-116-

Here is an example of the Evaporation Pattern dialog box. The pattern dialog boxes for other pattern tables have much the

same form as the Evaporation Pattern dialog box.

The important features of the dialog box are:

 Window Title - Identifies the pattern by name or by its node or arc association.

 Table of values on different dates of the year - The values or dates can be edited in this table control. You can

add or delete rows in the table. To add a row type the values into the empty row at the bottom, and move the cursor

to a different row when you have finished. The new row will be automatically sorted. To delete a row, click on the

gray “record selector” column on the left margin of the row, and then hit the DELETE key. If you change any values

in the table, and then move the cursor to a different row, the changes are immediately reflected in the graph.

The table can have between 2 and 366 rows. The table must always have a row for the first date of the year and the

last date of the year, as defined by the year scheme (section 2.8.5). The values of the pattern variable are equal to the

values in this table multiplied by the multiplication factor.

 Graph of pattern values - The graph shows the values from the table multiplied by the multiplication factor. The

x-axis of the graph is the value of the julian day variable, i.e. the date of the year as a number 1 through 366. Note

that 1 is the first date of the year scheme (section 2.8.5). The x-axis of the graph extends from less than 1 to more

than 366. This allows you to see the pattern extending from approximately three months of the previous year to three

months of the following year. This is done to give you a clearer picture of the pattern variable as a value that cycles

every year. Vertical bars in dark yellow are shown at julian=1 and julian=366, to visually separate the year from the

portions of the previous year and following year. If you change any values in the table, and then move the cursor to

a different row, the changes are immediately reflected in the graph.

 Units - This box tells what units the input values are measured in. The possible selections in the box are defined by

the Units Table (section 4.5.3 part A). The box is linked to the units field in the database table of the pattern.

-117-

 Multiplication Factor - The values of the pattern variable are equal to the values in the table multiplied by the

value in this box. Often the value is 1. You can change this value to adjust the entire pattern at once. If the value is

zero, then the entire pattern is zero. The box is linked to the factor field in the database table of the pattern. If you

change the value in this box, and then move the cursor to a different control, the changes are immediately reflected in

the graph.

 Change Name, Change Node, or Change Arc - By pressing this button, you can select a new name for the pattern,

or a different node or arc to associate the pattern with. If you make such a change, there will be no pattern associated

with the previous node, arc, or name, unless you later add one.

 Import Data - By pressing this button, you can select another pattern variable in the same table and copy all the

values from that other variable into the current one. All the original values in the current variable are deleted.

Here is an example of the OCL Pattern dialog box. The OCL Pattern dialog box is similar to the dialog boxes for other

pattern tables except for a few controls described below.

The controls that are unique to the OCL Pattern dialog box are:

 EOP M ethod - This control is linked to the EOP field in the OCL Pattern table (section 4.5.8 part B). If the box is

checked, then OASIS interprets the variable by the end-of-period method, equivalent to a value of 1 in the EOP

field.

 Flow to volume - This control is linked to the Flow to Vol field in the OCL Pattern table (section 4.5.8 part B). If

the box is checked, then OASIS interprets the variable as a flow rate (in primary flow units) that should be converted

to volume (in primary volume units), equivalent to a value of 1 in the Flow to Vol field.

 Rate to Volume - This control is linked to the rate field in the OCL Pattern table (section 4.5.8 part B). If the box

is checked, then OASIS interprets the variable as a flow rate that should be converted to volume (no conversion

factors are applied), equivalent to a value of 1 in the rate field.

-118-

3.8.4 Reservoir Storage-Area-Elevation Dialog Box

The dialog box provides a way of viewing and editing the reservoir storage-area-elevation data for a single reservoir node.

The dialog box is linked to the Reservoir S-A-E database table (section 4.5.3 part J). In most cases, using the dialog box is

more convenient than viewing or editing the data in the whole table where all nodes are represented. The dialog box provides

an easy way to change the node that the data is associated with, or to copy the data from one reservoir to another. See section

2.4.0 part F for an introduction to how OASIS handles elevation and surface-area data.

To access this dialog box: on the Node Settings dialog box (section 3.8.1), press the Edit Reservoir Storage / Area /

Elevation Data button. Alternatively, with the Reservoir SAE table showing on the Node tab (section 3.7.4), click on the

menu Edit > Edit Single Reservoir S-A-E.

Here is an example of the Reservoir Storage-Area-Elevation dialog box:

The important features of the dialog box are:

 Window Title - Identifies the reservoir node that this S-A-E data is associated with.

 Table of Elevation, Storage, and Area values - You can edit values or add or delete rows in the table. To add a

row type the values into the empty row at the bottom, and move the cursor to a different row when you have finished.

 The new row will be automatically sorted. To delete a row, click on the gray “record selector” column on the left

margin of the row, and then hit the DELETE key. If you change any values in the table, and then move the cursor to

a different row, the changes are immediately reflected in the graph.

 Graph of table values - If you change any values in the table, and then move the cursor to a different row, the

changes are immediately reflected in the graph. The x-axis of the graph is determined by the selected option button

under the x-variable heading above the graph. The y-axis of the graph is determined by the selected option button

under the y-variable heading above the graph. Because there are three columns in the table and only two axes on the

graph, you can click the x-variable and y-variable buttons to change which variables you want to see on the graph.

-119-

 Units - There is one box each for elevation, storage, and area units. The possible selections are determined by the

Units table (section 4.5.3 part A). The selected value in each box tells OASIS what units the values of the table are

measured in.

 Change Node - By pressing this button, you can select a different node to associate the current reservoir S-A-E

data with. If you make such a change, there will be no reservoir S-A-E data associated with the previous node,

unless you later add such data.

 Import Data - By pressing this button, you can select another node and copy all the reservoir S-A-E data from that

other node into the current one. All the original reservoir S-A-E values for the current node are deleted.

3.8.5 OCL Lookup Dialog Box

This dialog box provides a way of viewing and editing a single OCL lookup function. The dialog box is linked to the Lookup

database table (section 4.5.8 part A). In most cases, using the dialog box is more convenient than viewing or editing the data

in the whole table where all lookup functions are represented. The dialog box provides an easy way to change the name of the

lookup function, or to copy the data from one lookup function to another.

To access this dialog box: with the OCL Lookup table showing on the OCL tab (section 3.7.6), click on the menu Edit >

Edit Single Reservoir S-A-E.

Here is an example of the OCL Lookup dialog box:

The important features of the dialog box are:

 Window Title - Identifies the name of the lookup function.

 Table of Independent and Dependent values - You can edit values or add or delete rows in the table. To add a

-120-

row type the values into the empty row at the bottom, and move the cursor to a different row when you have finished.

 The new row will be automatically sorted. To delete a row, click on the gray “record selector” column on the left

margin of the row, and then hit the DELETE key. If you change any values in the table, and then move the cursor to

a different row, the changes are immediately reflected in the graph.

 Graph of table values - If you change any values in the table, and then move the cursor to a different row, the

changes are immediately reflected in the graph. The graph reflects the “assumption between breakpoints” setting.

Thus, if you click any of the buttons under the Assumption between breakpoints header, changes are immediately

reflected in the graph. The graph also reflects the fact that OASIS applies the smallest independent value if the

dependent value is less than the first breakpoint, and the largest independent value if the dependent value is more

than the last breakpoint.

 Assumption between breakpoints - The selected option button under this header tells OASIS what the result of

the lookup function is when the dependent value is between breakpoints. This is linked to the Interp field in the

database table. If the Next lowest value button is selected, it is equivalent to an entry of LOWER in the Interp field.

If the Interpolate button is selected, it is equivalent to an entry of INTERP in the Interp field. If the Next highest

value button is selected, it is equivalent to an entry of UPPER in the Interp field.

 Change Name - By pressing this button, you change the name of the current lookup function.

 Import Data - By pressing this button, you can select another lookup function and copy all the values from that

other function into the current one. All the original values for the current function are deleted.

-121-

3.9.0 STATUS BAR

At the bottom of the main GUI window is the status bar. The status bar is broken into a series of boxes. The GUI uses the

first box (on the left) to display messages while you are working on the schematic (section 3.7.1). Mainly, it reminds you

what state the mouse is in.

The third box in the status bar can be used to quick identification of a node or arc on the schematic (section 3.7.1). If you rest

the mouse pointer over a node or arc, the name and number of the node or arc will appear in the status bar.

The second box in the status bar is used to remind you whether the output and input are matched. There are two possible

messages displayed in this box:

 Output NOT CURRENT: (always accompanied by a red light) Either there is no output, or the input data has been

edited since the last time the model was executed. Thus, if you view any output files through the Output menu, you

should be aware that they are not matched to the input. You may still view the output files – just remember that they

reflect a previous execution with different input.

 Output CURRENT: (always accompanied by a green light) The input has not changed since the last time the model

was executed.

The GUI monitors the status of all files listed in the OCL Command Files box (section 3.7.6). If you save changes to any of

those files, it can change the status bar to say Output NOT CURRENT.

If you execute model.exe outside of the GUI, then the GUI will not have good information about whether the output is current.

Therefore, we recommend that you do not execute model.exe outside of the GUI. There are some things you can do to

prevent any potential confusion of mismatched output and input:

 As soon as a run is done executing, lock it by clicking Lock in the File Menu (section 3.6.1 part E). If you

immediately lock your runs, then you will never have a run where the output is not current after the model has been

executed.

 Check the box labeled Auto Delete Output Files in the Preferences dialog box (section 3.6.2 part C). When the box

is checked, the GUI automatically deletes output files every time a run is saved and the output is not current. Thus,

you will be unable to view output that does not match the input. However, there is still the potential for confusion

before the run is saved.

We are not suggesting that you must follow either of the above methods, since the message and colored light are always

displayed to remind you whether the output is current. However, we have found that some users are interested in a higher

level of assurance.

-122-

CHAPTER 4
REFERENCE: MODEL INPUT

4.1.0 COMMAND LINE

Several run-control parameters can be specified in the OASIS command line. All command-line parameters are optional —

OASIS can be run simply by clicking on the model.exe file in Windows Explorer, without any special command line. If you

need a special command line, there are several ways you can enter it, including:

 From MS-DOS, enter the command line at the prompt. You can also write MS-DOS batch files to run OASIS.

However, DOS does not wait for OASIS to finish executing before continuing with the next command in the batch

file (see Chapter 8 for more info).

 Create a batch file for the OASIS batch program (Chapter 8).

 From the Windows Start menu, choose the Run menu item. You will be presented with a text box in which you can

enter the full command line.

 Create a Windows shortcut to execute OASIS. Do this from Windows Explorer. Select the file for the OASIS

executable (Model, Onevar, or Plot). Click the right mouse button, and a menu will appear. Select Create Shortcut.

A shortcut will appear in the same directory. You can move the shortcut to any location you desire, including the

Windows desktop. To edit the command line, select the shortcut and click the right mouse button. A menu will

appear, from which you can select Properties. When you do, a box will appear. Select the Shortcut tab. In the text

box labeled Target, you can enter the full command line.

Note that the OASIS GUI (Chapter 3) calls OASIS with a particular command line when you click Run, and it does not

provide any means of customizing that command line.

The first argument in a command line is always the name of the file to be executed. Subsequent arguments are the optional

input parameters. Each argument must be separated from the others by a space. Some arguments consist of a parameter

name, and equal sign, and a parameter value. These parts of the argument must not be separated from each other by space.

An example command line is:

MODEL CF=alternate.cf FATALWARN

The part CF=alternate.cf is a single argument, whose parts are not divided by spaces. However, this argument is separated

from the other argument, FATALWARN, by a space.

The available command-line parameters are listed below.

C. KEY=[file name]

Tells OASIS that [file name] will be the identity key (section 4.2.0). [File name] may contain full path info, relative to the

location of the executable file. By default, OASIS uses the file OASIS.idKey as the identity key. The command line

parameter overrides the default.

D. DIR=[directory name]

Tells OASIS that [directory name] will be the run directory (section 2.3.1). OASIS’s default is to retrieve the name of the

run directory from the pointer file, directry.nam (section 4.3.0). The command line parameter overrides the entry in the

pointer file.

-123-

E. CF=[file name]

Tells OASIS that [file name] will be the control file (section 4.4.0). This overrides the default name model.cf.

F. PARENT=[thread ID]

Tells OASIS that it has been spawned by another process with [thread ID] . When OASIS finishes simulation, normally or

due to an error, it passes a message back to the parent thread. The message WM_CHILD_DIED means a fatal error, and the

message WM_FINISHED means a normal shutdown.

G. FATALWARN

This parameter means that anything that normally prompts a warning becomes a fatal error.

H. NOCLICK

Normally, when there is a warning or error, a message box appears, and the program pauses until the user clicks a button.

Entering this parameter suppresses the message box, so that the program continues without waiting for a user click.

I. F1=[F-path]

The given [F-path] will be used as the F-part of the DSS pathname for any record declared in the Declare Timeseries table

(section 4.5.3 part P) with the string /F1 in the field F Path. [F-path] is not applied to any records that do not use the /F1

flag. The position analysis program (section 9.0.0) sends this command-line option to OASIS. Do not try to specify your

own F1 option in the command line if you are post-processing position analysis.

J. IN=[file name]

(Onevar only) The given [file name] will become the Onevar input file (section 6.1.3). By default, Onevar retrieves the name

of the Onevar-input file from the pointer file, Onevar.cf (section 6.1.2). The command line overrides the entry in the pointer

file.

K. POSANALYSIS

(Onevar and Plot only) The post-processor program will run in position analysis mode. This is only appropriate for OASIS

output that has been generated from position analysis (section 9.0.0).

L. HIDEXA

This option tells OASIS to hide the XA window. This parameter is ignored for post-processors.

For the PA program (section 9.0.0), this option causes the OASIS window and the XA window to be invisible, so that only the

main window of the PA program is showing.

M. HIDEALL

The program will run without any windows visible.

N. PLOTPF=[file name]

(Plot only) Tells Plot that the given [file name] will be the plot pointer file (section 6.2.1). This overrides the default name

plot.cf.

O. NoRunInput

(Onevar and Plot only) The post-processor program will run without reading model input or output files. This is called pre-

processor mode. See 6.1.6 for more information.

-124-

P. WarnXAxis

(Plot only) Tells Plot to display a warning message in a pop-up window if it detects potential for mis-labeling of the x-axis.

The warning message will only be displayed if the following criteria are met:

 Multiple runs are plotted

 The x-values of the lines are absolute period numbers, as determined in the TickLabel field of the Axis table (section

6.2.3 part D).

 The first two time steps of each run are not identical.

Plot does not check the tick-label codes entered into the TickLabel field. Therefore, just because the warning is triggered

does not mean that the x-axis is mislabeled. Consider the case where one run starts on 7/1/2000, another run starts on

7/1/2001, and both runs use a daily time step. If we do a multiple-run plot of this data using absolute period numbers as the x-

values, the two lines will overlap on the x-axis.

 If the tick-label code is %m/%d, we might get labels such as 07/01, 07/11, 07/21,... These certainly do not mislabel

the data.

 If the tick-label code is %m/%d/%y, we might get labels such as 07/01/00, 07/11/00, 07/21/00,... These labels are

correct for the first run but not for the second.

4.2.0 IDENTITY KEY

The identity key is a file that contains licensing information for OASIS in an encrypted form. A file of this type uses the

filename extension idKey. Only HydroLogics staff may create this type of file. The licensing message contained in the file is

printed to the screen while OASIS runs. The message is also printed to output files.

By default, the identity key is named OASIS.idKey and must be located in the folder where OASIS is running. You may

specify a different filename and/or path with the KEY command-line parameter (section 4.1.0).

4.3.0 POINTER FILE

The pointer file is an ASCII text file that must be found in the same directory as the executable file. OASIS reads this for the

single task of getting the path of the run directory (section 2.3.1). However, the OASIS GUI reads other information from

this file (section 3.3.4).

The name of the pointer file is directry.nam . It is read by the model program, as well as the post-processors. If the command

line argument DIR (section 4.1.0) is used, then the name of the run directory will come from the command line, and OASIS

will not read the pointer file.

The pointer file must include a pipe character “|”, followed by a pathname. The pathname can be relative or absolute. The

use of the pipe character allows you to put comments in the pointer file, because all text preceding the pipe and all text

following the pathname are ignored. An example text from a pointer file is:

| runs\study8

-125-

//CONTROL FILE for RUN1
This is the description for Run1.

| system_0.mdb // system file
| dem_0.mdb // demand file
| weigh_0.mdb // weights file
| inflow_0.mdb // inflow file
| time_0.mdb // time parameters file
| init_0.mdb // initial conditions file

| dwrsim.OCL // OCL file
| // placeholder no longer used

| 1 // balance sheet output (1=yes; 0=no)
| 0 // LP output (1=limited; 2=full; 0=no)
| 3 // OCL output (add: 0=no, 1=expression eval,
 2=solution report)
| 1 // DSS output (1=yes; 0=no)

| output.dss // output file

Control File: “model.cf”

4.4.0 CONTROL FILE

The control file is an ASCII text file found in the run directory (section 2.3.1). The control file tells OASIS where to find

input data and what types of output should be written. Note that if you are using the GUI (Chapter 3), all information is

maintained automatically and you might never need to look at this file.

By default, the name of the control file is model.cf. This default name can be overridden with the command line parameter

CF (section 4.1.0).

OASIS finds the information it needs in the control file by searching for the pipe character, “|”. It skips over all text until a

pipe is found, then it reads one entry. It then skips over all subsequent information until the next pipe is found, and so forth.

This allows you to enter comments as you need, because OASIS ignores all text that is not preceded by a pipe.

The second line of the file will be read as the run description. The description can be up to 90 characters long, and it does

not use a pipe character. This description will be echoed in the output files, and you can choose to include it in your Onevar

outputs (see section 6.1.9 part A).

File names in the control file can include path information. The path is relative to the run directory, or absolute.

The first six entries in the control file are the names of Microsoft Access database files that contain static model input. These

do not have to be six individual files — any number of them can be combined into larger files. However, there will still be six

entries in the control file. For example, the system file and the demand file can be combined into one file. Specify this in the

control file by repeating the same file name for both system and demand files. The database files listed in the control file are:

A. System file (section 4.5.3)

B. Demand file (section 4.5.4)

C. Weights file (section 4.5.7)

D. Time-parameters file (section 4.5.2)

E. Inflow file (section 4.5.5)

-126-

F. Initial conditions file (section 4.5.6)

The next two pieces of information are the names of files containing ASCII text information:

G. OCL file (section 4.7.0)

H. Empty placeholder was formerly used to contain the name of the trigger file. This type of input file is no longer used by

OASIS. For backward compatibility, OASIS still expects a pipe in this position, but it ignores the information that follows

the pipe.

Next are four flags that tell OASIS if it is to generate specific output files. The first three of these files are truly optional.

They can help you understand and debug the model. However, the fourth file is a comprehensive record of simulation results

stored in HEC-DSS format, which should always be turned on. The optional files are only meant to supplement this official

log. Because the optional output slows execution time and can consume a lot of disk space, you will often want to turn these

flags off. Each file is turned off with a “0" value for the flag.

I. Balance sheet output (balance.out) contains balance sheets, reports of every inflow and outflow at a node. The file

contains a balance sheet for every node in the system, for every time step of simulation. The balance sheet output is described

in section 5.2.0. The possible values of the flag are:

 1 Write complete balance sheets for the entire run.

 0 No balance sheet output will be written.

J. LP output (LP.out) is a file generated by XA, the LP solver that is called by OASIS. The output is described in section

5.5.0. Writing this file can cause OASIS to run very slowly, so we advise keeping it off unless it is needed. The possible

values of the flag are:

 0 No LP output will be written.

 1 Write the algebraic form of the LP to the file.

 2 Write the algebraic form of the LP and a solution report to the file.

Because the LP output can be so large and slow, there is an option for keeping LP output off until a certain time period. At

the given time period it is turned on at the specified level (0, 1, or 2). To use this option, attach the date to the end of the LP

output level number, separated by a colon — no spaces. The date should be in “M/D/YYYY” format. For example,

| 2:4/1/1976

will keep LP output off until April 1, 1976, at which time it will be turned on at level 2.

K. OCL output (OCL.out) contains a report on the results of OCL commands during simulation. This output is described in

section 5.3.0. The possible values of the flag are:

 0 Only write a summary of OCL input.

 1 Write the summary of OCL input, and each time step write a report of the results of expression evaluations.

 2 Write the summary of OCL input, and each time step write a report of the results of the target and minimax

commands.

 3 Write the summary of OCL input, and each time step write both a report of the results of expression

evaluations and a report of the results of the target and minimax commands.

 4 Same as level 3, but also write detailed “notes” on the evaluation of expressions. Although it is available,

this option is somewhat experimental, and the “notes” are not organized to be user-friendly.

-127-

Because the OCL output can be so large and slow, there is an option for keeping OCL output off until a certain time period.

At the given time period it is turned on at the specified level (0 through 4). To use this option, attach the date to the end of

the OCL output level number, separated by a colon — no spaces. The date should be in “M/D/YYYY” format. For example,

| 3:4/1/1976

will keep OCL output off until April 1, 1976, at which time it will be turned on at level 3.

L. DSS output flag. The name of the DSS output file is user-defined. This output contains a complete record of time-series

simulation results for retrieval by post-processor programs. The file is described in section 5.6.0. Only in rare cases would

you want to turn this output off – although DSS output is extremely time-consuming, it is essential for post-processing. Note

that even if this flag is off, specially flagged OCL udefs (section 4.7.2 part B) may still be written. The possible values of the

flag are:

 0 No DSS output will be written, except specially flagged OCL udefs.

 1 Write complete DSS output for the entire run.

M . DSS output file name. See section 5.6.0 for a description of this file.

-128-

4.5.0 STATIC DATABASES

The static database files are all in MS Access format. They can be viewed and edited using MS Access. Each file contains

certain tables. The table contains a matrix of fields and records. When the table is displayed, the fields appear as columns

and the records appear as rows.

Due to the modular nature of OASIS input, most of the tables have variable numbers of records, or rows. For example, the

Node table contains a record for each node in the system. To add a node to the system, you add a record to the Node table.

However, a few tables, such as the Units table, contain a fixed number of records. In such tables, you must not add or delete

records, or try to change the order of records.

Almost all of the data in these tables can be edited through the OASIS GUI (Chapter 3), making it unnecessary for most users

to have MS Access. It is faster and easier to work with the OASIS GUI than it is to edit the tables with MS Access. Most of

the tables are available in the GUI through table controls that look almost identical to the tables in the database. Some of the

table data is available in non-table controls (such as drop-down list boxes). A few of the tables, notably the water-quality

tables, are not yet represented by any controls in the GUI.

There are seven different static database files. For convenience, you can combine these files together in any possible

combination. For example, you could combine them all into a single file. Another way would be to combine the system,

demand, inflow, and time-parameters files together, but leave the initial conditions and weights files separate, so that there are

three static database files total. However, you can not break one of the six basic files apart. For example, all the tables of the

weights file must appear in one file. You cannot put some of those tables in the system file and others in the demand file.

The GUI requires that all the static database files be combined into a single file, which is named statdata.mdb (section 3.3.7).

Some of the static database files employ time-series files, which are in HEC-DSS format (see section 4.6.0). Time-series

database files are treated as supplements of the static database files. For example, the demand file contains a table called File

ID, which contains the name of a time-series file. This time-series file can store time-series demand values. If you combine

static databases which refer to time-series databases, then the supplemental time-series databases are automatically combined.

For example, if you combine the system file and the inflow file, then the combined database will only contain one File ID

table. The time-series file that it names will be the combined system- and inflow-time-series file.

Subsequent sections describe each of the static database files in detail. Here is a complete list of the table names and the files

that each are found in.

System Database (section 4.5.3)

Arc : listing all arcs in the system.

Balance Sheet Columns : formatting for the balance sheet output.

Balance Sheet Rows : formatting for the balance sheet output.

Concentration : listing all water quality constituents.

Declare Timeseries : listing non-standard options for DSS records.

Evaporation : listing the source of all reservoir evaporation data.

Evaporation Pattern : pattern input for evaporation rate.

File ID : naming a time-series database file

Maximum Flow : pattern input for maximum flow in arcs.

Maximum Reverse Flow : pattern input for maximum reverse flow in arcs.

Minimum Flow : pattern input for minimum flow in arcs.

Node : listing all nodes in the system.

Reservoir : listing all reservoir nodes in the system.

Reservoir Rules : pattern input for reservoir rule curves.

Reservoir S-A-E : look-up table of reservoir storage-area-elevation curves.

Units : defining the units of measurement.

-129-

Demand Database (section 4.5.4)

Demand : listing all demand nodes in the system.

Demand Pattern : pattern input for demand values.

File ID : naming a time-series database file

Weight Database (section 4.5.7)

Weight: Arc : giving weights for flow in arcs

Weight: Demand : giving weights for delivery to demand nodes.

Weight: Storage : giving weights for storage in reservoir nodes.

Inflow Database (section 4.5.5)

Cx Pattern : pattern input for water quality constituent x.

Inflow Pattern : pattern input for unregulated inflow to nodes.

File ID : naming a time-series database file

Time Parameters Database (section 4.5.2)

DSS Steps : specifies a DSS record upon which to base the time steps.

PosAnalysis : specifies the traces if a position analysis is being performed.

Range : giving the start and stop of simulation time.

Run : giving the size of the time step.

Runtime : the clock time when the run was performed.

Steps : defining the simulation time steps in a cycle.

Year scheme : determines whether the year begins on a date other than January 1.

Initial Conditions Database (section 4.5.6)

Initial Conditions : giving the initial storage and water quality values at all reservoir nodes.

OCL Static Database (section 4.5.8)

Lookup : giving look-up tables for the OCL lookup function.

Pattern : giving pattern input that can be referred to with the OCL pattern variable.

-130-

4.5.1 CONVENTIONS FOR TIME-PATTERN TABLES

A. General

In OASIS, pattern input refers to input that varies by period, with the values cycling every year. For instance, the March

value may be different from the April value, but every March has the same value as every other March, and every April has

the same value as every other April. This is more efficient than time-series, because you only need to create input for one

year.

Several of the static database tables are designed especially for pattern data. OASIS applies a standard set of conventions in

all these tables. The conventions allow the pattern data to be time-step-independent. This means that if you design the

pattern input well, you can use the same database for runs of different time-step sizes.

This section is a reference for the conventions of the pattern tables. The following tables follow these conventions. You may

refer to the reference sections for each of these tables to see examples of the pattern tables.

 Minimum Flow table (section 4.5.3 part E).

 Maximum Flow table (section 4.5.3 part F).

 Maximum Reverse Flow table (section 4.5.3 part G).

 Reservoir Rules table (section 4.5.3 part I).

 Evaporation Pattern table (section 4.5.3 part L).

 Demand Pattern table (section 4.5.4 part B).

 Inflow Pattern table (section 4.5.5 part A).

 C1 Pattern, C2 Pattern, etc. tables (section 4.5.5 part B).

 Pattern table (section 4.5.8 part B).

Note that the best way to edit pattern tables is using the OASIS GUI’s pattern dialog box (section 3.8.3).

In all of the database tables that use the pattern conventions, there will be at least two records (rows) per pattern. Each record

gives the value of the input variable at a point in time. All records that are part of one pattern must be contiguous. They form

a block. Although they need to be contiguous, the records in the block do not need to be in any particular order. OASIS will

sort the records after it has read the entire block.

The table controls in the GUI automatically distinguish each block for you by applying alternating colors: red, blue, and

white; to each block. All the records of one block are the same color, and they are a different color from adjacent blocks.

All database tables that use the pattern conventions have these fields:

 One or more identifying fields. For example, the Demand Pattern table has a Node number field to identify which

node the pattern is to be used for. The Pattern table for OCL patterns has a Name field to give the name of the

pattern. The Minimum Flow table has two identifying fields, U/S Number and D/S Number.

The identifying fields distinguish one block from another. Throughout the block, the identifying fields are all the

same. When the identifying field changes, OASIS interprets that record as the first of a new block. However, in all

tables that follow the pattern conventions, you may leave the identifying fields blank in all but the first record of

each block. In other words, leaving the field blank is the same as repeating its value from the previous block. This

serves as a visual aid, since the beginning of each block stands out clearly. However, if you are using the GUI then

you can never leave the identifying field blank. The blank fields are legal without the GUI, but not with the GUI.

The GUI provides a different visual aid: distinguishing each block by color.

 Month field. The Month field is the first part of the time coordinate of the point in the pattern which the record

represents. This field is always an integer 1-12, where 1 always means January and 12 always means December.

This field can never be left blank.

-131-

 Day field. The Day field is the second part of the time coordinate of the point in the pattern which each record

represents. This field is always an integer 1-n, where n is the number of days in the month given by the Month field.

This field can never be left blank.

 One or more value fields. For example, the Minimum Flow table has a Min Flow field. This field gives the value

of the input variable at the point in the pattern which each record represents.

Each record gives the value of the input variable at a point in time. The minimum number of points (therefore, the number of

records) in any pattern, is two. There must be one record for the first day of the year, and one for the last day. The first day

of the year is determined by the year scheme, as entered in the Year scheme table (section 4.5.2 part C). For example, if the

year scheme is a water year, then the first day of the year is October 1, and the last day of the year is September 30. If the

year scheme is a regular year, then the first day of the year is January 1.

Except for the first and last day of the year, the time coordinates of each point are completely user-determined. If appropriate,

you may enter as many as 366 points (that is, one for every day of the year), or as few as two. There is no requirement that

the points you enter for the pattern fall on the endpoints of simulation periods. This is part of the time-step-independent

nature of the pattern input.

OASIS reads the block of records which define a pattern, then redistributes the data to get values for every simulation period.

During simulation, OASIS’ memory only contains the values distributed over the simulation periods. There are variations in

the process of redistribution, depending upon the units of measurement in which the variable is stored in OASIS memory, and

the units of measurement which you assign to the pattern input. Parts C through F of this section describe the different

methods of redistribution. See section 2.9.0 for an overview of units of measurement. Most of the database tables for pattern

input use a Units field, which you use to tell OASIS the units in which your input values are measured. OASIS stores each

type of variable using a particular measuring system (documented in 2.9.0), except for the OCL patterns in the Pattern table

(section 4.5.8 part B). OASIS does not make any assumptions about the units of measurement of the OCL patterns. Thus,

you must specify which type of numerical integration to perform through several flag fields.

-132-

B. Leap day in pattern input

When it redistributes pattern values, OASIS checks whether you entered a value for February 29. If you did not, but there is a

value for February 28 and a value for March 1, then OASIS assumes that you forgot about February 29. Therefore it

automatically assigns February 29 the same daily value as February 28. This means that in leap years (section 2.8.4), the

value of an integrated variable in February might be higher than in non-leap years. If you do not like this assumption, then

you should explicitly enter a value for February 29 whenever you enter a value for February 28. Many modelers prefer to

ignore the existence of leap year. If you have an integrated variable, then you may wish to omit February 29 from the

computations by entering a value of zero for that day.

C. Redistributing volume input to volume per time step

If the input is entered as a volume, then OASIS assumes the input values have already been integrated over time. Most of

the different types of OASIS variables are some form of flow, and they are stored in units of volume per time step. For

example, demands, inflows, and maximum flows are stored in this way. Refer to the following input table to understand how

OASIS handles the redistribution of volume input for one of these flow-type variables.

The points that are given define the endpoints of a span. Thus, January 1 through 31 are one span, February 1 through 29 are

another span, and March 1 through 15 are yet another. When using volume units for a flow-type variable, you usually enter

the same value for both endpoints of the span. Note that the span for the month of January uses two different values. Thus,

the flow varies linearly over the month of January, but the total is the average of 200 and 400. This is an unusual case which

we present here for illustration.

If we are simulating with a monthly time step, the values of the inflow to node 101 would be:

Month Inflow (AF) Month Inflow (AF)

1 300 7 34.38

2 100 (Leap year) 8 34.38

3 105 9 33.28

4 33.28 10 34.38

5 34.38 11 33.28

6 33.28 12 34.38

In non-leap years, the value of the inflow in February would be 96.55 AF.

-133-

D. Redistributing flow-rate input to volume per time step

If the input is entered as a flow rate, then OASIS assumes the values have not already been integrated over time. To

understand how OASIS processes this input, refer to the following table. The table uses the same numbers as the previous

example but uses a different units label.

One CFS equals 1.9835 AF/day. Therefore, if we are simulating with a monthly time step, the values of the inflow to node

101 would be:

Month Inflow (AF) Month Inflow (AF)

1 18447 7 55340

2 5752 (Leap year) 8 55340

3 3253 9 53555

4 53555 10 55340

5 55340 11 53555

6 53555 12 55340

In non-leap years, the value of the inflow in February would be 5554 AF. Note how much different the assumptions are when

the units are a flow rate. In this case, OASIS does a numerical integration to get the values in volume units per time step.

Furthermore, the input which varies linearly over the month of January is not so unusual when the units are a flow rate.

-134-

E. Redistributing volume input to volume

Unlike those variables which are stored as volumes per period, when the variable is just a volume, the input can not be entered

as a flow rate. These variables usually represent reservoir storage. The values used in simulation are derived with the end-of-

period assumption. This is consistent with the fact that operations are typically targeted on the end of the time step. Refer to

this example input table:

If we are simulating with a monthly time step, the upper rule curve would have these values:

Month Rule (TAF) Month Rule (TAF)

1 100 7 200

2 100 8 200

3 200 9 200

4 200 10 200

5 200 11 200

6 200 12 200

The lower rule curve would have these values:

Month Rule (TAF) Month Rule (TAF)

1 60 7 75

2 100 (Leap year) 8 69.94

3 94.94 9 65.03

4 90.03 10 59.97

5 84.97 11 55.07

6 80.07 12 50

During February of non-leap years, the value of the lower rule curve would be 98.62 TAF.

-135-

F. Redistributing concentration input

When the input is the concentration of a water-quality constituent, OASIS assumes that the instantaneous value of the

concentration is interpolated between the given points. To get the value for a simulation period, it takes the mean value.

G. Time-series input

OASIS also reads time-series input (section 4.6.0) with conventions that allow the input to be independent of the time steps of

simulation. OASIS applies the same technique for redistributing the data from time-series input and time-pattern input. The

only conceptual difference is that time-series input must cover the entire time range of simulation, while time-pattern input

only covers one year and is implicitly repeated for the entire time range of simulation.

As with time-pattern input, you should refer to section 2.9.0 to know in what units of measurement OASIS stores the values.

The units of the input values are specified in a UNITS field in the DSS record. For backward compatibility with previous

versions of OASIS, there are assumptions about the units of measurement of time-series input. However, you may override

these assumptions using the EOP, Rate, and Avg fields in the Declare Timeseries table (section 4.5.3 part P).

-136-

Example

4.5.2 TIME-PARAMETERS DATABASE FILE

A. Table Range

Contains the start and stop times for the simulation. The identities of the records (rows) are fixed.

The OASIS GUI links to this table through two alternate places: the Simulation Time Range table on the Time tab (section

3.7.3 part A), and the Start of Run and End of Run boxes on Setup tab (section 3.7.2).

The fields of this table are:

Field Name Type Size Description

name Text N/A Do not edit this field. It is there for your convenience to identify the

fixed records. OASIS does not read this field.

Year Number Integer The four-digit year number.

Month Number byte The month number of the date(1-12), where January is always 1

Day Number byte The day of the date (1-31).

Hour Number byte The hour of the day (0-24)

Minute Number byte The minute of the hour (0-59)

FLAG Text 1 If the entry in the field is B, then the given date and time are interpreted

as the beginning of the time step. The default is to interpret as the end

of the time step. This field is only read for the first record, the start

time. It is ignored for all other records.

The fixed records of this table are:

 START The last day of the first simulation time step. See section 2.8.2.

 STOP The last day of the last simulation time step. See section 2.8.2.

 BREAK Do not edit this record. When OASIS shuts down prematurely, it records the time step

when the run stopped. This information is used by the post-processors or by a

continuation run.

 CONTINUE The time step when you wish for a continuation run to begin. This time must not come after the

stop time or the break time. If the time precedes the start time, then OASIS will not run in

continuation mode. In the example, the year zero clearly will prevent continuation mode. See

section 2.8.3.

-137-

Example

B. Table Run

Contains miscellaneous parameters for handling simulation time. There is only one record in this table.

The fields of this table are:

Field Name Type Size Description

Time step Text 8 The type of simulation time step. Options are DAILY , WEEKLY ,

MONTHLY , CYCLE, or DSS. See section 2.8.1. The OASIS GUI

links to this field through the Type of time step box on the Time tab

(section 3.7.3 part B).

PosAnal NumSteps Number Integer The number of time steps in each trace run of the position analysis.

This field is only used if you are doing a position analysis (section

9.2.3). If you are not doing a position analysis, this field may be

omitted. The OASIS GUI links to this field through the Number of

time steps per trace box on the Time tab (section 3.7.3 part C).

PosAnal DataSource Text 12 The technique for getting time-series data for a position analysis run

(section 9.1.0). Choices are GENERATED or HISTORICAL. If

you are not doing a position analysis, this field may be omitted. The

OASIS GUI links to this field through the Type of Position Analysis

box on the Time tab (section 3.7.3 part C).

C. Table Year scheme

Identifies the year scheme (section 2.8.5) to be used for the run. This is done by naming the month in which the year begins.

The year always begins on the first of that month. The entry in this table is ignored if you are using the Steps table (section

4.5.2 part D) and the time steps are fixed to the year. There is only one record in this table.

The OASIS GUI links to this field through the Beginning of Year box on the Time tab (section 3.7.3 part B).

The fields of this table are:

Field Name Type Size Description

Year scheme Text 3 The 3-letter abbreviation for the month in which a year begins.

-138-

Example: Monthly step

D. Table Steps

Contains a row for every time step within one time cycle of simulation. The table defines the cyclical time steps of simulation

if the entry in the Time step field of the Run table is CYCLE. In this case, it defines the order, length (or ending dates), labels,

and MPO parameters. If the entry in the Time step field is DSS, then this table defines only the labels and MPO parameters.

If the entry in the Time step field is anything else then this table is not used and can be omitted. See section 2.8.1 for a

discussion of the ways you can define time steps in OASIS, and 2.2.7 for a discussion of MPO. The OASIS GUI links to this

table through the Steps Table control on the Time tab (section 3.7.3 part B).

In the :STEP: field, a Onevar input file may name a Steps table for defining special post-processor time steps (section 6.1.7

part I). The special table used by the post-processor has exactly the same format as the Steps table, but it does not have to

have the name Steps, and it does not have to be in the time-parameters database file. The post-processors do not use the Solve

field for these special steps..

When the Time step field says CYCLE , this table is used in one of two modes. The first mode defines the time steps on a

cycle that is not fixed to the year. The steps are defined by their length, and you choose the appropriate total length of the

cycle. This mode uses the Length field, but not the Month or Day fields. The second mode defines the time steps in a cycle

that is fixed to the year. The steps are defined by their ending dates, and the cycle must be one year in length. The second

mode uses the Month or Day fields, but not the Length field. Note that the first day of the year is the day following the end

date of the last time step. You can define your cycle so that the year begins on any date.

The example shows an entry that would have the same effect as entering MONTHLY into the Time step field of the Run table

(section 4.5.2 part B) and OCT into the Year scheme table (section 4.5.2 part C). The example would not simulate any MPO.

The one difference from the MONTHLY option is that this example would label each month with a three-letter abbreviation

instead of the number format. For example, Nov instead of 11/31.

More examples of the Steps table are given below.

-139-

The fields of this table are:

Field Name Type Size Description

Number Number Integer The number of the step in the cycle. The steps must be ordered 1, 2, 3, ... etc.

Label Text 15 The label that is used to refer to this time step in output. In certain contexts,

OASIS appends the year number to the end of the label. In other situations (such

as the balance sheet output), it does not append the year number. You may apply

special codes which OASIS can interpret for you. See notes below.

Length Text 8 The length of the time step. Use this field if the cycle is not fixed to the year. If

this field is used, then the Month and Day fields must be empty. See notes below.

Month Number Byte The month number of the end date of the time step. Use this field if your cycle is

fixed to the year. If this field is used, then the Length field must be empty.

Day Number Byte The day of the month at the end of the time step. Use this field if your cycle is

fixed to the year. If this field is used, then the Length field must be empty.

Solve Number Byte The number of future periods, including the current period, to enter into the LP to

solve. The value must be greater than or equal to zero. If the value is zero, then

no LP is written for the time step. If you do not wish to do any MPO, then enter 1

for every step.

Notes:

 Label field

Text that you enter into this field is treated as the literal text for the label, except for special codes that are listed

below. For reference, these codes are processed by the function strftime in the C run-time library. We present all of

the codes below, so that you should not have to look up information on strftime. Note that the codes are case-

sensitive.

Code Description Example

%a Abbreviated weekday name (three letters) Thu

%A Full weekday name Thursday

%b Abbreviated month name (three letters) Sep

%B Full month name September

%c Date and time representation 09/30/20 24:00:00

%d Day of month as decimal number (01 – 31) 30

%H Hour in 24-hour format (00 – 23) 24

%I Hour in 12-hour format (01 – 12) 12

%j Day of year as decimal number (001 – 366) 366

%L Abbreviated month name (one letter) (J, F, M, A, M, J, J, A, S, O, N, D) S

%m Month as decimal number (01 – 12) 09

%M Minute as decimal number (00 – 59) 00

%n The period number of the year. Equal to the OCL variable period (section 4.7.4). 2

Code Description Example

-140-

Example: Twice-weekly step

%N The absolute period number. This is equal to 1 during the first time step and counts
thereafter, never being reset. Equivalent to the OCL variable abs_period (section
4.7.4).

508

%p A.M./P.M. indicator for 12-hour clock PM

%S Second as decimal number (00 – 59) 00

%U Week of year as decimal number, with Sunday as first day of week (00 – 53) 52

%w Weekday as decimal number (0 – 6; Sunday is 0) 4

%W Week of year as decimal number, with Monday as first day of week (00 – 53) 52

%x Date representation 09/30/20

%X Time representation 24:00:00

%V Abbreviated weekday name (one letter) (S, M, T, W, T, F, S) T

%y Year without century, as decimal number (00 – 99) 20

%Y Year with century, as decimal number 1920

%% Percent sign %

By default, the routine adds leading zeros. You may add the symbol # to remove the leading zeros, like so:

%#d %#H %#I %#j %#m %#M %#S %#U %#w %#W %#y %#Y

You may combine any number of codes with literal text. However maximum length of the label is 15 characters.

We recommend that you do not try to include the year in your label, because OASIS automatically adds the year to

the label when appropriate.

 Length field

 The text that you enter in this field must be an integer number followed by a code for one of three units of time: D

for days, H for hours, or M for minutes. For example, if you enter 6D , then the time step is 6 days long. An entry of

50H specifies a step that is 50 hours long. The entry must use only one time unit. For example, if the time step is 89

minutes long, you should enter 89M , not 1H29M .

Here is an example of the table used for a cycle that is not fixed to the year.

This example creates a cycle that is seven days long. The first five days have the label WEEK and the last two days have the

label WEEKEND . This example tells OASIS to do MPO. During the first step, OASIS will solve one LP for both time steps.

During the second time step, no LP solves are done.

The next example is almost exactly the same as the pre-defined WEEKLY time step. The only difference is that the time step

label defined below lacks a forward slash between the month and the day numbers.

-141-

Example

Example: Weekly step

E. Table DSS Steps

Identifies a DSS record upon which the simulation time steps are to be based. See section 2.8.1 for more information about

simulation time steps. This table is only read if the entry in the Time Step field of the Run table is DSS (section 4.5.2 part B).

Otherwise, this table can be omitted. There is only one record in this table.

The OASIS GUI links to this table through the DSS File and DSS Record controls on the Time tab (section 3.7.3 part B).

The fields of this table are:

Field Name Type Size Description

File Text 128 The name of the file which contains the DSS record given in the Path

field. The name can include path information, relative to the run

directory, or absolute.

Path Text 81 The DSS pathname of the record upon which the simulation time steps

are to be based.

-142-

Example

F. Table PosAnalysis

Identifies the component runs, or traces, of the position analysis. If you are not doing a position analysis (section 9.0.0), then

this table can be omitted. Although you may enter one record for each trace of the position analysis, it is also possible to

summarize runs with consecutive trace numbers by using the Include Skip field. You may specify a different initial-

conditions file for each trace. The records in this table must be in time order.

The OASIS GUI links to this table through the Position Analysis Traces control on the Time tab (section 3.7.3 part C).

The example tells the position analysis program to do runs with trace numbers 1925, 1927, 1928, 1929, 1930, 1935, 1936,

1937, and 1938. If we are doing the historical data source method, then the trace numbers are the year numbers of the start of

each run. Traces number 1927 through 1930 use the initial-conditions file InitCond2.mdb. All other trace runs use whatever

initial-conditions file is named in model.cf.

The fields of this table are:

Field Name Type Size Description

Include Skip Text 3 If this field is Y or YES, then every trace number between that of the

record and the previous record will be also be used as a trace number.

These summarized traces use the same initial conditions file named in the

current record.

TraceNum Number Integer The trace number. The trace number is the text that is used for the F-path

of designated input time-series records (section 9.1.0). If the data source

method is historical, then the trace number is the year in which the trace

begins.

InitCond file Text 80 The initial conditions file (4.5.6) to use for the trace, with pathname

absolute or relative to the run directory. If left blank, then the component

run will use the file listed in model.cf (see section 4.4.0). If the Include

Skip field is YES, then the name given must be identical to the name given

in the previous record.

-143-

Example

G. Table Runtime

Used by OASIS to store the real time at which the run was performed. At the beginning of a run, OASIS records the real time

on the clock. This can be displayed in Onevar output (see section 6.1.9 part A). You should never edit the contents of this

table.

The fields of this table are:

Field Name Type Size Description

Start time Text 30 The time on the computer’s clock when the run was executed. This

is not related to the time range. OASIS writes to this field

automatically. You should never edit the contents of this field.

Model Version Text 15 The version number of model.exe that executed the run. OASIS

writes to this field automatically. You should never edit the

contents of this field.

TerminateNormal Yes/No This field indicates if the run ended successfully or with a fatal

error. At the beginning of the run, model.exe writes No to the field.

If the run terminates successfully (with no fatal errors), the program

rewrites this field with Yes.

-144-

Example

4.5.3 SYSTEM DATABASE FILE

A. Table Units

Defines all the units of measurement (section 2.9.0) that OASIS uses, except for water quality units, which are given in the

table Concentration (section 4.5.3 part D). There are six records (rows) in this table, and their identities are fixed. This table

may be omitted, in which case default units will be used. The example shows input that is equivalent to the default units.

Many users have been confused about the meanings of the different conversion factors in this table. Therefore, the GUI

provides a special dialog box just for entering this information. It is highly recommended that you use this dialog box, called

the Units Wizard (section 3.7.7), because it carefully illustrates the meaning of each entry.

The fields of this table are:

Field Name Type Size Description

Type Text N/A Do not edit this field. It is there for your convenience to identify the fixed

records. OASIS does not read this field.

Name Text 9 This is the name of the primary unit for the dimension of measurement. The

primary unit will be the default unit that OASIS uses to store values. It is also

the default unit of OCL variables.

Conv Factor Number single This is a factor for converting between dimensions, such as from length to

volume. There is a specific meaning for the conversion factor of each row.

Refer to the example above and the descriptions of the individual records

below. Please note that this conversion factor is for converting between

dimensions; the subsequent factors for the alternates are for converting within

a dimension.

Decimals Number Byte The number of digits after the decimal point that are displayed in a balance

sheet for values measured in this unit. See section 5.2.0 for reference on the

balance sheet output.

Altx Name Text 9 The alternate name or abbreviation, or the name of alternate units for the

dimension of measurement. OASIS will recognize the alternate name and

convert to the primary units for internal calculations. The field may be left

blank.

-145-

Alt1x Factor Number single The factor that you would multiply by a value measured in alternate units to get

a value in primary units. In the example table above, most of the alternates are

just alternate names for the same units. Suppose we had entered YARDS into

the last record. The alternate factor would be 36.0. Please note the distinction

between this factor and the factor in the field labeled Conv Factor. The field

may be left blank.

The fixed records of this table are:

 Volume units

Internally, all volumes are measured in the primary volume units, and all flow rates are measured in primary volume

units per time step. Therefore, all flow and volume values in OCL expressions and output are by default measured in

primary volume units.

Conversion factor: Multiply a value in volume units by the conversion factor to get a value in cubic elevation units.

 Big Volume units

The big volume units are automatically treated as alternate units for volume units. The database input for reservoir

storage values is assumed to be measured in the primary big volume units, if the units of the input are not labeled.

The reference for each input table tells what the default units assumptions are.

Conversion factor: Multiply a value in big volume units by the conversion factor to get a value in volume units.

 Flow rate units

The flow rate is a volume over a time step of constant size (a month does not have constant size). The database

input for arc flows is assumed to be measured in the primary flow units, if the units of the input are not labeled. The

reference for each input table tells what the default units assumptions are.

Conversion factor: Multiply a value in flow units by the conversion factor to get a value in volume units per day.

 Reservoir Surf Area units

The surface area of a reservoir is measured in the primary area units. The database input for surface area in the

Reservoir S-A-E table (section 4.5.3 part J) is assumed to be measured in the primary area units, if the units of the

input are not labeled.

Conversion factor: Multiply a value in area units by this value to get a value in square elevation units.

 Reservoir Elevation units

All reservoir elevations and evaporation rates are measured in the primary elevation units. The database input for

elevation in the Reservoir S-A-E table (section 4.5.3 part J) is assumed to be measured in the primary elevation units,

if the units of the input are not labeled.

Conversion factor: Multiply a value in elevation units by this value to get a value in evaporation units

 Evaporation units

The evaporation units are automatically treated as alternates for the elevation units. The database input for

evaporation rate in the Evaporation Pattern (section 4.5.3 part L) table is assumed to be measured in the primary

evaporation units, if the units of the input are not labeled.

Conversion factor: The entry in the Conversion Factor field for Evaporation units is moot. The recommended

entry is “1". Effectively, the evaporation units are the starting point, from which the units for measuring all other

dimensions are derived.

-146-

Example

B. Table Node

This table contains a record for every node (section 2.1.1) in the system. The table is used to identify the node type, the

source of inflow data, the boundary conditions for water quality computations, and the source of water quality data. The table

also contains information about how the node is represented in the GUI’s schematic.

The example does not show several fields that are required by the OASIS GUI. Those fields are described below.

The following fields of the Node table are linked to the table in the OASIS GUI’s Node tab (section 3.7.4):

Field Name Type Size Description

Node Number Number Integer The number of the node, between 1 and 999.

Name Text 50 The name of the node. The name can be used to identify the node in

the OASIS GUI, but this field is not read by model.exe. However, the

GUI can write the node names as OCL substitutes (section 4.7.1 part I)

for model.exe to read. This option can be configured in the GUI’s

Preferences dialog box (section 3.6.2 part C). If you intend to use the

node names as OCL substitutes, then you should not use spaces in the

node names.

Type Text 12 The type of node. Choices are JUNCTION, DEMAND, or

RESERVOIR .

Inflow Text 15 If the node has no inflow from outside the system (unregulated inflow),

enter NONE. If there is an unregulated inflow, enter the source of the

inflow data. Choices are TIME SERIES, OCL, or PATTERN . See

note below.

SubType Number Byte The number of the node category for the node. Must be one of the

codes in the zzGUI_NodeType table (section 4.5.9 part F). In the GUI

interface, this field is reflected in the Category column. This field is

not read by model.exe.

Notes:

 Inflow field

If TIME SERIES, then a record must be found in the inflow time-series database (section 4.6.4 part A). If

PATTERN , then records must be entered into the Inflow Pattern table (section 4.5.5 part A). If OCL, then the

inflow variable must be set with the OCL set command (section 2.5.1 part C).

-147-

The following fields of the Node table are not interfaced through the OASIS GUI. The model only reads these fields if

OASIS is being used to simulate water quality (section 2.10.0). The x in the field names represent the number of the water

quality constituent. There must be one of each of these fields for each water quality constituent in the model.

Field Name Type Size Description

Cx_type Text 10 Field only used if water quality constituent x is being modeled. This

field identifies the type of boundary condition used at the node. If

there is no boundary condition at the node, then leave the field blank.

The other choices are :

 Inflow the input data specifies the concentration in the

unregulated inflow to the node.

 Node the input data specifies the exact concentration of the

entire node.

 Treat the input data specifies the removal efficiency at the

node.

 Add the input data specifies a value to add to the

concentration at the node.

Cx_input Text 15 Field only used if water quality constituent x is being modeled. This

field identifies the source of input data for the boundary condition used

at the node. If there is no boundary condition at the node, then leave

the field blank The other choices are TIME SERIES, OCL, or

PATTERN . See note below.

Cx_output Text 4 Only used if water quality constituent x is being modeled. Enter NO to

suppress water quality output from being written to the DSS database

for this node. Otherwise, output will be written. Suppressing output is

recommended wherever possible, due to the run time and disk space

consumed by DSS.

Notes:

 Cx_input field

If TIME SERIES, then a record must be found in the inflow time-series database (section 4.6.4 part B). If

PATTERN , then records must be entered into the Cx Pattern table (section 4.5.5 part B). If OCL, then the

conc_input variable must be set with the OCL set command (section 2.5.1 part C).

-148-

The following fields of the Node table are read only by the OASIS GUI, but no interface for them appears on the Node tab.

These fields are not read by model.exe or any of the post-processor programs. These fields should only be edited by the

OASIS GUI. The fields read only by the OASIS GUI are:

Field Name Type Size Description

X

Y

Number Long

Integer

The x- and y-coordinates of the center of the node on the schematic

display, where X=0 is the left edge and Y=0 is the top edge.

NameX

NameY

Number Long

Integer

(On the schematic display) the x- and y-coordinates of the center of the

node-name label relative to the center of the node.

HideName Yes/No If Yes, then the GUI does not show a name label for the node on the

schematic display. If No, then the name label is shown.

InflowX

InflowY

Number Long

Integer

(On the schematic display) the x- and y-coordinates of the end of the

arrow representing inflow to the node, relative to the center of the

node.

InflowType Number Byte The type of inflow shown on the schematic display. Must be one of the

codes in the zzGUI_InflowType table (section 4.5.9 part H).

RotationAngle Number Double The angle of rotation for the node-name label on the schematic display,

in degrees counter-clockwise from horizontal.

-149-

Example

C. Table Arc

This table contains a record for every arc in the system (section 2.1.2). The table is used to identify the nodes connected to

each arc, the sources of data for: minimum (target) flow, maximum flow, and maximum reverse flow; the boundary conditions

for water quality computations, and the source of water quality data. The table also contains information about how the arc is

represented in the GUI’s schematic.

The example does not show several fields that are required by the OASIS GUI. Those fields are described below.

The following fields of the Node table are linked to the table in the OASIS GUI’s Arc tab (section 3.7.5):

Field Name Type Size Description

U/S Number Number Integer The node number at the upstream end of the arc.

D/S Number Number Integer The node number at the downstream end of the arc.

Name Text 50 The name of the arc. The name can be used to identify the arc in the OASIS

GUI, but this field is not read by model.exe.

Min Flow Text 15 The source of input data for the minimum (target) flow in the arc (section

2.4.0 part B). If there is no minimum flow, enter NONE. If there is a

minimum flow, enter the source of the data. Choices are TIME SERIES,

OCL, or PATTERN . See note below.

Max Flow Text 15 The source of input data for the maximum (bound) flow in the arc (section

2.4.0 part A). If there is no maximum flow, enter NONE. If there is a

maximum flow, enter the source of the data. Choices are TIME SERIES,

OCL, or PATTERN . See note below.

MaxRev Flow Text 15 The source of input data for the maximum reverse (bound) flow in the arc

(section 2.4.0 part C). If there is no maximum reverse flow, enter NONE. If

there is a maximum reverse flow, enter the source of the data. Choices are

MIRROR, TIME SERIES, OCL, or PATTERN . See note below.

SubType Number Byte The number of the arc category for the arc. Must be one of the codes in the

zzGUI_ArcType table (section 4.5.9 part G). In the GUI interface, this field

is reflected in the Category column.

Dummy Yes/No If Yes, then the arc is ignored. It cannot be used in any input that uses an arc

number, such as Minimum Flow table or OCL flow variable. It is not entered

into the LP router in any form.

Field Name Type Size Description

-150-

Hide Yes/No If No then the arc is drawn normally on the schematic display. If Yes, then

the arc is not drawn, although it is applied in the model.

Notes:

 Min flow, Max flow, and MaxRev flow fields

If TIME SERIES, then a record must be found in the system time-series database (section 4.6.2 part A, 4.6.2 part

B, and 4.6.2 part C). If PATTERN , then records must be entered into the Minimum flow, Maximum flow, or

Maximum Reverse flow table (section 4.5.3 part E, 4.5.3 part F, and 4.5.3 part G). If OCL, then the min_flow,

max_flow, or maxrev_flow variable must be set with the OCL set command (section 2.5.1 part C). The option

MIRROR is only available for maximum reverse flows. If used, then the maximum reverse flow will be the

negative of the maximum flow. OASIS automatically handles this, so you do not need to enter any input for the

maximum reverse flow value. If MIRROR is used, and there is no maximum flow, then the arc will be capable of

unbounded negative flow.

The following field is not interfaced through the OASIS GUI:

Field Name Type Size Description

Output Text 4 (Optional). Enter NO to suppress arc flows from being written to the DSS

database (section 5.6.0) for this arc. Otherwise, output will be written.

Suppressing output is recommended wherever possible, due to resources

consumed by DSS.

The following fields of the Arc table are not interfaced through the OASIS GUI. The model only reads these fields if OASIS

is being used to simulate water quality (section 2.10.0). The x in the field names represent the number of the water quality

constituent. There must be one of each of these fields for each water quality constituent in the model.

Field Name Type Size Description

Cx_type Text 10 Field only used if water quality constituent x is being modeled. This field

identifies the type of boundary condition used at the arc. If there is no

boundary condition at the arc, then leave the field blank. The other choices

are :

 Arc the input data specifies the exact concentration of the arc.

 Treat the input data specifies the removal efficiency at the arc.

 Add the input data specifies a value to add to the concentration

at the arc.

Cx_input Text 15 Field only used if water quality constituent x is being modeled. This field

identifies the source of input data for the boundary condition used at the arc.

If there is no boundary condition at the arc, then leave the field blank The

other choices are TIME SERIES, or OCL. See note below.

-151-

Notes:

 Cx_input field

If TIME SERIES, then a record must be found in the inflow time-series database (section 4.6.4 part C). If OCL,

then the conc_input variable must be set with the OCL set command (section 2.5.1 part C).

The following fields of the Arc table are read only by the OASIS GUI, but no interface for them appears on the Arc tab.

These fields are not read by model.exe or any of the post-processor programs. These fields should only be edited by the

OASIS GUI.

Field Name Type Size Description

NameX

NameY

Number Long

Integer

(On the schematic display) the x- and y-coordinates of the center of the

node-name label relative to the center of the arc.

HideName Yes/No If Yes, then the GUI does not show a name label for the arc on the

schematic display. If No, then the name label is shown.

NumBend Number Byte The number of bend points in the arc as drawn on the schematic

display.

b01

b02

b03

b04

b05

b06

Number Byte (On the schematic display) the x- and y-coordinates of each bend point

drawn in the arc. The odd-numbered fields are the x-coordinates and

the even-numbered fields are the y-coordinates. For each arc, the

OASIS GUI only reads as many fields as it needs to fulfill the number

of bend points indicated by the NumBend field. For example, if

NumBend is 1, then only the b01 and b02 fields are read.

RotationAngle Number Double The angle of rotation for the arc-name label on the schematic display,

in degrees counter-clockwise from horizontal.

-152-

Example

D. Table Concentration

This table contains a record for every water quality parameter in the run. If no water quality parameters are being simulated,

then the table can be omitted entirely. For discussion of water quality, see 2.10.0. This table is not interfaced in the OASIS

GUI.

The fields of this table are:

Field Name Type Size Description

number Number byte Assign each constituent with a number in the order it appears in this

table, beginning with 1. The purpose is to reinforce the association of

each constituent with its number (thereby the meaning of labels such as

the C1_type field in the Node table).

Name Text 12 The name of the constituent. This name will be used to label the

concentration of the constituent in output and in OCL.

Units Text 9 The name of the primary units of measurement for this constituent. All

values will be stored in these units. All output will appear in these

units. OCL variables will be measured in these units.

Altx Name Text 9 The alternate name or abbreviation, or the name of alternate units for

the measurement of this constituent. OASIS will recognize the

alternate name and convert to the primary units for internal

calculations. The field may be left blank.

Alt1x Factor Number single The factor that you would multiply by a value measured in alternate

units to get a value in primary units. The field may be left blank.

-153-

Example

E. Table Minimum Flow

This table contains a record for every arc with a pattern minimum (target) flow (section 2.4.0 part B), as identified in the Arc

table (section 4.5.3 part C). If no arcs have pattern minimum flows, then the table can be omitted entirely. This table follows

the conventions for pattern static input. See section 4.5.1 for a discussion of these conventions.

The OASIS GUI links to this table through a control on the Arc tab (section 3.7.5). It is recommended that you use the

pattern dialog box (section 3.8.3) to edit the data in this table.

The fields of this table are:

Field Name Type Size Description

U/S Number Number Integer The node number at the upstream end of the arc.

D/S Number Number Integer The node number at the downstream end of the arc.

Units Text 9 The units in which this flow is measured. Must be flow, volume, or big

volume units. The units are the same for every value of the block, and

OASIS only reads this field in the first record of each block. If this

field is omitted, then all values will be assumed to be in primary flow

units (section 2.9.0).

Month Number byte The month of the point in time. See section 4.5.1.

Day Number byte The day of the month of the point in time. See section 4.5.1.

Min Flow Number Single The value of minimum (target) flow at the point in time. See section

4.5.1 for conventions on interpolation of the pattern.

-154-

Example

F. Table Maximum Flow

This table contains a record for every arc with a pattern maximum (bound) flow (section 2.4.0 part A), as identified in the Arc

table (section 4.5.3 part C). If no arcs have pattern maximum flows, then the table can be omitted entirely. This table follows

the conventions for pattern static input. See section 4.5.1 for a discussion of these conventions.

The OASIS GUI links to this table through a control on the Arc tab (section 3.7.5). It is recommended that you use the

pattern dialog box (section 3.8.3) to edit the data in this table.

The fields of this table are:

Field Name Type Size Description

U/S Number Number Integer The node number at the upstream end of the arc.

D/S Number Number Integer The node number at the downstream end of the arc.

Units Text 9 The units in which this flow is measured. Must be flow, volume, or big

volume units. The units are the same for every value of the block, and

OASIS only reads this field in the first record of each block. If this

field is omitted, then all values will be assumed to be in primary flow

units (section 2.9.0).

Month Number byte The month of the point in time. See section 4.5.1.

Day Number byte The day of the month of the point in time. See section 4.5.1.

Max Flow Number Single The value of maximum flow at the point in time. See section 4.5.1 for

conventions on interpolation of the pattern.

-155-

Example

G. Table Maximum Reverse Flow

This table contains a record for every arc with a pattern maximum reverse (bound) flow (section 2.4.0 part C), as identified in

the Arc table (section 4.5.3 part C). If no arcs have pattern maximum reverse flows, then the table can be omitted entirely.

This table follows the conventions for pattern static input. See section 4.5.1 for a discussion of these conventions.

The OASIS GUI links to this table through a control on the Arc tab (section 3.7.5). It is recommended that you use the

pattern dialog box (section 3.8.3) to edit the data in this table.

The fields of this table are:

Field Name Type Size Description

U/S Number Number Integer The node number at the upstream end of the arc.

D/S Number Number Integer The node number at the downstream end of the arc.

Units Text 9 The units in which this flow is measured. Must be flow, volume, or big

volume units. The units are the same for every value of the block, and

OASIS only reads this field in the first record of each block. If this

field is omitted, then all values will be assumed to be in primary flow

units (section 2.9.0).

Month Number byte The month of the point in time. See section 4.5.1.

Day Number byte The day of the month of the point in time. See section 4.5.1.

Maximum Reverse

Flow

Number Single The value of maximum reverse flow at the point in time. See section

4.5.1 for conventions on interpolation of the pattern. Remember that

this is the lower bound on the flow in the arc, and a negative value

must be used to allow flow in the reverse direction.

-156-

Example

H. Table Reservoir

This table contains a record for every reservoir node in the system. If there are no reservoir nodes, then the table can be

omitted entirely. The entry for the reservoir may indicate that it is a single-zone reservoir, or a four-zone reservoir. In the

latter case, the value of the dead storage is given, and the sources for the lower and upper rule curves are identified. The

value of the maximum storage is required for every reservoir, whether it has one or four zones. For discussion of reservoir

storage zones, see section 2.4.0 part H. The type of assumption for water quality computations is needed only if water quality

is being simulated. Thus, the conc assumption field may be omitted if there is no water quality. For a discussion of water

quality computations, see section 2.10.0.

The OASIS GUI links to this table through a control on the Node tab (section 3.7.4).

The fields of this table are:

Field Name Type Size Description

Node Number Number Integer The number of the reservoir node

Dead Storage Number Single The dead storage, or top of the “A” zone (always a constant value) at

the reservoir. This value is ignored for a single-zone reservoir.

Dead Stor Units Text 9 The units in which in which the dead storage value is measured. Must

be elevation, volume, or big volume units. If this field is omitted, then

all values will be assumed to be in primary big volume units (section

2.9.0).

Lower Rule Text 15 The source of the lower rule values. If NONE is entered, then the

reservoir will be a single-zone reservoir. Choices are TIME SERIES,

PATTERN , or OCL. See note below.

Upper Rule Text 15 The source of the upper rule values. If NONE is entered, then the

reservoir will be a single-zone reservoir. Choices are TIME SERIES,

PATTERN , or OCL. See note below.

Max Storage Number Single The capacity, or maximum storage (bound) of the reservoir.

Max Stor Units Text 9 The units in which in which the maximum storage value is measured.

Must be elevation, volume, or big volume units. If this field is omitted,

then all values will be assumed to be in primary big volume units

(section 2.9.0).

Field Name Type Size Description

-157-

Conc Assumption Text 3 The type of assumption to make when computing water quality. The

same assumption will hold for all constituents. This field is not

interfaced in the OASIS GUI. Choices for this field are:

 BEG assume that the outflow from the reservoir node has the

same concentration as the beginning-of-period

concentration at the reservoir.

 END assume that the outflow from the reservoir node has the

same concentration as the end-of-period concentration at

the reservoir.

Notes:

 Lower Rule and Upper Rule fields

If either of these two fields contains NONE, then the reservoir will have a single zone, and the contents of the other

field is moot. If TIME SERIES, then a record must be found in the system time-series database (section 4.6.2 part

E and 4.6.2 part F). If PATTERN , then records must be entered into the Reservoir Rules table (section 4.5.3 part I).

If OCL, then the upper_rule or lower_rule variable must be set with the OCL set command (section 2.5.1 part C).

-158-

Example

I. Table Reservoir Rules

This table contains a record for every reservoir node which has a pattern upper or lower rule curve (section 2.4.0 part H), as

indicated in the Reservoir table (section 4.5.3 part H). If there are no reservoirs with pattern rule curves, then the table can be

omitted entirely. This table follows the conventions for pattern static input. See section 4.5.1 for a discussion of these

conventions.

The OASIS GUI links to this table through a control on the Node tab (section 3.7.4). It is recommended that you use the

pattern dialog box (section 3.8.3) to edit the data in this table.

The fields of this table are:

Field Name Type Size Description

Node Number Number Integer The number of the reservoir node

Units Text 9 The units in which the dead storage value is measured. Must be

elevation, volume, or big volume units. If this field is omitted, then all

values will be assumed to be in primary big volume units (section

2.9.0).

Month Number byte The month of the point in time. See section 4.5.1.

Day Number byte The day of the month of the point in time. See section 4.5.1.

Lower Rule Number Single The value of the lower rule curve at the point in time. See section 4.5.1

for conventions on interpolation of the pattern. The value for the

period is the value on the day at the end of the period.

Upper Rule Number Single The value of the upper rule curve at the point in time. See section

4.5.1 for conventions on interpolation of the pattern. The value for the

period is the value on the day at the end of the period.

Notes:

 If only one of the lower or upper rule curves uses pattern values, then dummy values must be entered for the other.

These values will be overwritten by the OCL or time-series values.

-159-

Example

J. Table Reservoir S-A-E

Contains a look-up table which shows the relationship between storage, area, and elevation at reservoir nodes (section 2.4.0

part F). For each node, there should be a set of contiguous records, where each record gives a point on the storage-area-

elevation “curve”. OASIS will linearly interpolate between the given points. This table may contain an entry for every

reservoir node in the system. If there are no reservoir nodes, then the table can be omitted entirely. If a reservoir node does

not have an entry in this table, then OASIS will use a default for that reservoir, where area and elevation are always zero.

When OASIS needs to look up a value from the Reservoir S-A-E table, and the input elevation or storage exceeds the range of

the table, OASIS uses the smallest or largest value in the table. In the example below, if OASIS computes a storage of 25000

ac-ft at node 150, then the storage exceeds the maximum storage value in the table. Therefore, OASIS assumes the elevation

at node 150 is 2695 ft, because that is the largest elevation value in the table.

The OASIS GUI links to this table through a control on the Node tab (section 3.7.4). It is recommended that you use the

Reservoir Storage-Area-Elevation dialog box (section 3.8.4) to edit the data in this table.

The fields of this table are:

Field Name Type Size Description

Node Number Number Integer The number of the reservoir node

Elevation Number Single The elevation value for the point on the curve. If you enter -99, then

OASIS will interpolate to get the elevation value at the point.

Elevation Units Text 9 The units in which in which the elevation is measured. Must be

elevation or evaporation units. If this field is omitted, then all values

will be assumed to be in primary elevation units (section 2.9.0).

Storage Number Single The storage value for the point on the curve. If you enter -99, then

OASIS will interpolate to get the storage value at the point.

Storage Units Text 9 The units in which in which the storage is measured. Must be volume

or big volume units. If this field is omitted, then all values will be

assumed to be in primary big volume units (section 2.9.0). See note

below.

Area Number Single The area value for the point on the curve. If you enter -99, then OASIS

will interpolate to get the area value at the point.

-160-

Example

Area Units Text 9 The units in which in which the area is measured. Must be surface area

units. If this field is omitted, then all values will be assumed to be in

primary surface area units (section 2.9.0). See note below.

Notes:

 Elevation Units, Storage Units, and Area Units fields

These fields are only read for the first record of each node, and the same units are applied to all values in the curve

of that node.

K. Table Evaporation

Contains a record for each reservoir node at which evaporation should occur (section 2.4.0 part G). If you are not modeling

evaporation at any reservoir nodes, then this table may be omitted entirely. If a reservoir node does not have an entry in this

table, then OASIS will take zero evaporation from that reservoir.

The OASIS GUI links to this table through a control on the Node tab (section 3.7.4).

The fields of this table are:

Field Name Type Size Description

Node Number Number Integer The number of the reservoir node

Evaporation Type Text 9 The source of input data for the evaporation rate at the reservoir. If

there is no evaporation at the reservoir, enter NONE. Other choices

are TIME SERIES, PATTERN , or OCL. See note below.

Notes:

 Evaporation Type field

If TIME SERIES, then a record must be found in the system time-series database (section 4.6.2 part D). If

PATTERN , then a set of records should be entered into the Evaporation Pattern table (section 4.5.3 part L). If

PATTERN , and a set of records is not entered into the Evaporation Pattern table, then evaporation rate at this node

is zero.

If OCL, then the evap variable must be set with the OCL set command (section 2.5.1 part C). If OCL, then the

evap_rate variable can also be set with the OCL set command, but if evap_rate is not needed to compute evap, then

evap_rate can be safely ignored.

-161-

Example

L. Table Evaporation Pattern

This table contains a record for every reservoir node with a pattern evaporation rate, as identified in the Evaporation table

(section 4.5.3 part K). If no arcs have pattern evaporation rate, then the table can be omitted entirely. For discussion of

evaporation at reservoir nodes, see section 2.4.0 part G. This table follows the conventions for pattern static input. See

section 4.5.1 for a discussion of these conventions.

The OASIS GUI links to this table through a control on the Node tab (section 3.7.4). It is recommended that you use the

pattern dialog box (section 3.8.3) to edit the data in this table.

The fields of this table are:

Field Name Type Size Description

Node Number Number Integer The number of the reservoir node.

Units Text 9 The units in which the evaporation is measured. Must be elevation or

evaporation units. The units are the same for every value of the block, and

OASIS only reads this field in the first record of each block. If this field is

omitted, then all values will be assumed to be in primary evaporation

units (section 2.9.0).

factor Number Single A factor that OASIS will multiply by every value in the pattern. OASIS

only reads this field in the first record of each block.

Month Number byte The month of the point in time. See section 4.5.1.

Day Number byte The day of the month of the point in time. See section 4.5.1.

Evaporation Number Single The value of evaporation at the point in time. See section 4.5.1 for

conventions on interpolation of the pattern. OASIS processes this pattern

in the same way as if it were entered in volume units, and were to be stored

as a volume per period.

-162-

Example

M. Table File ID

Contains the name of the time-series file (section 4.6.2) that supplements the system database. This table has only one record.

The table is always required. If there are no system input variables to be retrieved from a time-series file, then the entry in

this table is irrelevant. It is legal to name a file that is also named in the OCL file with the :TIMEDB: command, or named in

one of the File ID tables of the other static databases.

The OASIS GUI provides an interface to this table when you click on Time Series Data in the Edit menu (section 3.6.2 part

A).

The fields of this table are:

Field Name Type Size Description

time-series file text 64 The name of the time-series file. The name may include path

information, absolute or relative to the run directory.

-163-

Example

N. Table Balance Sheet Columns

Contains information on the arrangement and formatting of columns in the balance sheet output (section 5.2.0). This table has

only one record. If this table is omitted, default formatting is used. The example shows input that is equivalent to the default

formatting for a monthly time step.

The OASIS GUI links to this table through a control on the Misc tab (section 3.7.7).

The fields of this table are:

Field Name Type Size Description

Width Number Byte The number of characters in each column of the balance sheet.

Sum Width Number Byte The number of characters in the column labeled total at the end of each

row. Making this column wider than the other columns separates it

visually. Furthermore, it may be necessary to make it wider since it

contains larger numbers than the other columns.

Grouping Text 12 The system for determining how many columns are in each balance-

sheet row, where each time step is represented by a column. Choices

are DAILY, WEEKLY, MONTHLY, QUARTERLY, YEARLY, or an

integer number of time steps. See notes below.

Notes:

 Grouping field

This field allows you to choose how many columns are in each balance sheet, where each column represents a

simulation time step. You should use this to break the simulation up into groups of time steps that are useful for

analysis. For example, it is often useful to examine operating decisions one year at a time. You should also consider

how readable the balance sheet will be. For example, a 50-column sheet is very difficult to view, since it probably

does not fit on one computer screen or one sheet of paper.

 If you enter YEARLY, QUARTERLY, MONTHLY, WEEKLY, or DAILY, then OASIS prints a balance sheet every

time the simulation comes to the end of a year, quarter (a three-month interval), month, week, or day, respectively. If

you enter an integer number in this field, OASIS writes a balance sheet every time that number of time steps have

been simulated. OASIS will not print more than 75 columns in a balance sheet.

-164-

Example

O. Table Balance Sheet Rows

Tells OASIS what types of variables to include in the balance sheet output (section 5.2.0). Including a variable means that

rows for that variable type are printed wherever applicable. For example, including shortage means that shortage is printed

for every demand node. Most variable types can be measured in two different ways, and this table allows you to tell OASIS

to print one or both ways. There are 19 records (rows) in this table, and their identities are fixed. If this table is omitted, the

balance sheet is written with default form. The example shows input that is equivalent to the default settings.

The OASIS GUI links to this table through a control on the Misc tab (section 3.7.7).

The fields of this table are:

Field Name Type Size Description

Name Text 16 Do not edit this field. It identifies the fixed records for your convenience.

OASIS does not read this field.

Include Main Units Text 3 Tells OASIS whether to include the variable in the balance sheet measured

in the main units. See the summary of the fixed records in this table

(below) to find out what the main units are for each of the variables. Enter

YES to include the variable. Enter NO or leave blank to omit the variable.

Include Alt Units Text 3 Tells OASIS whether to include the variable in the balance sheet measured

in the alternate units. See the summary of the fixed records to find out

what the alternate units are for each of the variables. Enter YES to include

the variable. Enter NO or leave blank to omit the variable.

total Text 3 Tells OASIS whether to write a value in the total column at the end of the

balance sheet row for the variable. See notes below.

total factor Number Single The value in the total column is multiplied by this factor.

-165-

The fixed records of this table are:

 Unreg inflow. The inflow to the node from outside the system. See section 2.4.0 part E.

Main units: primary volume units. Alt units: primary flow units.

 Inflow frm arc. The flow from an arc into the node.

Main units: primary volume units. Alt units: primary flow units.

 Storage. The storage at a reservoir node. See section 2.1.1 part B.

Main units: primary volume units. Alt units: primary elevation units.

 Dead Storage. The dead storage level at a reservoir node. See section 2.4.0 part H.

Main units: primary volume units. Alt units: primary elevation units.

 Lower Rule. The lower rule curve level at a reservoir node. See section 2.4.0 part H.

Main units: primary volume units. Alt units: primary elevation units.

 Upper Rule. The upper rule curve level at a reservoir node. See section 2.4.0 part H.

Main units: primary volume units. Alt units: primary elevation units.

 Max Storage. The max storage level at a reservoir node. See section 2.4.0 part H.

Main units: primary volume units. Alt units: primary elevation units.

 Area. The surface area at a reservoir node. See section 2.4.0 part F.

Main units: primary area units. Alt units: none.

 Evaporation. The evaporation at a reservoir node. See section 2.4.0 part G.

Main units: primary volume units. Alt units: primary flow units.

 Outflow to Arc. The flow from the node into an arc.

Main units: primary volume units. Alt units: primary flow units.

 Minflow. The minimum (target) flow from the node into an arc. See section 2.4.0 part B.

Main units: primary volume units. Alt units: primary flow units.

 Maxflow. The maximum flow from the node into an arc. See section 2.4.0 part A.

Main units: primary volume units. Alt units: primary flow units.

 MaxRev. The maximum reverse flow from the node into an arc. See section 2.4.0 part C.

Main units: primary volume units. Alt units: primary flow units.

 Demand. The demand at a demand node. See section 2.4.0 part D.

Main units: primary volume units. Alt units: primary flow units.

 Delivery. The delivery at a demand node. See section 2.4.0 part D.

Main units: primary volume units. Alt units: primary flow units.

 Shortage. The shortage at a demand node. See section 2.4.0 part D.

Main units: primary volume units. Alt units: primary flow units.

 Cx. The concentration of water quality constituent number x. See section 2.10.0.

Main units: primary units for constituent number x. Alt units: none.

See section 2.9.0 for an explanation of units of measurement in OASIS.

-166-

Example

Notes:

 Total field

The total column contains either the sum over all the columns of the balance sheet, or the average over all the

columns. Rows where the variable is measured in primary volume units have a sum, while rows where the variable is

measured in other units have an average. If YES is entered in this field, then the rows with both main units and

alternate units will have a value in the total column. If NO , then neither main-units or alternate-units rows will have

a value in the total column.

P. Table Declare Timeseries

Contains information for special labeling and conversion for DSS time-series records (section 4.6.0). You do not need to

enter records that do not need special treatment. If a record is not declared in this table, OASIS applies the standard

assumptions to it. The table can be omitted entirely if no DSS records need special treatment.

The OASIS GUI links to this table through a control on the Misc tab (section 3.7.7).

The fields of this table are:

Field Name Type Size Description

B Path Text 32 The B-part of the DSS pathname.

C Path Text 32 The C-part of the DSS pathname.

F Path Text 32 The F-part of the DSS pathname. If this field is left blank, then OASIS

ignores the F-part of the DSS pathname when searching for the record.

If this field contains the text /F1, then OASIS applies the F-part from

the command line option F1 (section 4.1.0) to this record. Any other

non-blank entry becomes the literal F-part of the pathname.

Units Text 9 Leave this field blank. We have not finished this feature yet.

EOP Number Byte Only applies to OCL timesers variables. Enter a 1 for the end-of-

period method. Enter 0 to turn off the end-of-period method. See

notes below.

Rate Number Byte Only applies to OCL timesers variables. Enter a 1 if the data in the

record is a flow rate that must be converted to volume per period.

Otherwise, enter 0. See notes below.

Avg Number Byte Only applies to OCL timesers variables. Enter a 1 if the data in the

record should be averaged over the simulation time steps. Otherwise,

enter 0. See notes below.

Field Name Type Size Description

-167-

Factor Number Single A factor that is multiplied by every data point in the record.

Prev Values Text 10 Leave this field blank. We have not finished this feature yet.

Post Values Text 10 Leave this field blank. We have not finished this feature yet.

Notes:

 Flag fields: EOP, Rate, and Avg

These fields only apply to OCL timesers variables (section 4.7.4). For other types of variables, these fields are

ignored. Only one of these three fields should have a value of 1 — the others should be zero. If more than one of

the fields has a value of 1, then the EOP field will override all others, and the Rate flag will override the Avg field. If

none of the fields have a value of 1, then OASIS will assume that the values in the record have been integrated over

each time span (see section 4.5.1).

 EOP field

If 1 is entered, the end-of-period method will be used. This means OASIS first interpolates between the input points,

and then the value for each simulation period is computed as the value at the end of the period. See section 4.5.1 for

more on time-pattern conventions.

 Rate field

If 1 is entered, OASIS will assume that the values are entered as flow rates, in units of X per day, and it will

internally convert the pattern into volume per simulation period in units of X. See section 4.5.1 for more on time-

pattern conventions.

 Avg field

If 1 is entered, OASIS will average the input data to derive the values for the simulation time steps.

-168-

Example

4.5.4 DEMAND DATABASE FILE

The demand file may be omitted entirely if there are no demand nodes.

A. Table Demand

Used to identify the sources of the demand input data for all of the demand nodes (section 2.4.0 part D). There must be a

record in this table for every demand node in the system. If there are no demand nodes, then this table may be omitted

entirely. The OASIS GUI links to this table through a control on the Node tab (section 3.7.4).

The fields of this table are:

Field Name Type Size Description

Node Number Number Integer The number of the demand node

Demand Type Text 9 The source of input data for the demand at the demand node. Choices

are TIME SERIES, OCL, or PATTERN . See note below.

Notes:

 Demand Type field

If TIME SERIES, then a record must be found in the demand time-series database (section 4.6.3 part A). If

PATTERN , then a set of records should be entered into the Demand Pattern table (section 4.5.4 part B). If

PATTERN , and a set of records is not entered into the Demand Pattern table, then demand at this node is zero. If

OCL, then the demand variable must be set with the OCL set command (section 2.5.1 part C).

-169-

Example

B. Table Demand Pattern

Provides pattern input for demand values (section 2.4.0 part D) at demand nodes. This table contains a set of records for

every demand node with pattern demand input, as identified in the Demand table (section 4.5.4 part A). If no demand nodes

have pattern demand input, then the table can be omitted entirely. This table follows the conventions for pattern static input.

See section 4.5.1 for a discussion of these conventions.

The OASIS GUI links to this table through a control on the Node tab (section 3.7.4). It is recommended that you use the

pattern dialog box (section 3.8.3) to edit the data in this table.

The fields of this table are:

Field Name Type Size Description

Node Number Number Integer The number of the demand node.

Units Text 9 The units in which the demand is measured. Must be volume, big

volume, or flow units. The units are the same for every value of the

block, and OASIS only reads this field in the first record of each block.

If this field is omitted, then all values will be assumed to be in primary

big volume units (section 2.9.0).

factor Number Single A factor that OASIS will multiply by every value in the pattern.

OASIS only reads this field in the first record of each block.

Month Number byte The month of the point in time. See section 4.5.1.

Day Number byte The day of the month of the point in time. See section 4.5.1.

Demand Number Single The value of demand at the point in time. See section 4.5.1 for

conventions on interpolation of the pattern.

-170-

Example

C. Table File ID

Contains the name of the time-series file (section 4.6.3) that supplements the demand database. This table has only one

record. The table is always required. If there are no demand input variables to be retrieved from a time-series file, then the

entry in this table is irrelevant. It is legal to name a file that is also named in the OCL file with the :TIMEDB: command, or

named in one of the File ID tables of the other static databases.

The OASIS GUI provides an interface to this table when you click on Time Series Data in the Edit menu (section 3.6.2 part

A).

The fields of this table are:

Field Name Type Size Description

time-series file text 64 The name of the time-series file. The name may include path

information, absolute or relative to the run directory.

-171-

Example

4.5.5 INFLOW DATABASE FILE

A. Table Inflow Pattern

Provides pattern input for inflow to nodes (section 2.4.0 part E). This table should contain a set of records for every node

with pattern inflow input, as identified in the Node table (section 4.5.3 part B). If no nodes have pattern inflow input, then the

table can be omitted entirely. If a node is flagged for pattern inflow input, but there is no entry for that node in this table, then

the inflow to the node is zero. This table follows the conventions for pattern static input. See section 4.5.1 for a discussion of

these conventions.

The OASIS GUI links to this table through a control on the Node tab (section 3.7.4). It is recommended that you use the

pattern dialog box (section 3.8.3) to edit the data in this table.

The fields of this table are:

Field Name Type Size Description

Node Number Number Integer The number of the node.

Units Text 9 The units in which the inflow is measured. Must be volume, big

volume, or flow units. The units are the same for every value of the

block, and OASIS only reads this field in the first record of each block.

If this field is omitted, then all values are assumed to be in primary

flow units (section 2.9.0).

factor Number Single A factor that OASIS will multiply by every value in the pattern.

OASIS only reads this field in the first record of each block.

Month Number byte The month of the point in time. See section 4.5.1.

Day Number byte The day of the month of the point in time. See section 4.5.1.

Inflow Number Single The value of inflow at the point in time. See section 4.5.1 for

conventions on interpolation of the pattern.

-172-

Example

B. Tables C1 Pattern, C2 Pattern, etc.

Table Cx Pattern provides pattern input for water quality constituent x at nodes (There is no standard input for water quality

pattern input at arcs). For discussion of water quality, see 2.10.0. This table should contain a set of records for every node

with pattern input for water quality constituent x, as identified in the Node table (section 4.5.3 part B). If no nodes have

pattern input for constituent x, then the table can be omitted entirely. If a node is flagged for pattern input for constituent x,

but there is no entry for that node in this table, then the input for constituent x for the node is zero. This table follows the

conventions for pattern static input. See section 4.5.1 for a discussion of these conventions.

This table is not interfaced through the OASIS GUI.

The fields of this table are:

Field Name Type Size Description

Node Number Number Integer The number of the node.

Units Text 9 The units in which the input is measured. Must be units defined for

this constituent in the Concentration table. If the type of boundary

condition in the Node table is treat, then the entry in this field is

irrelevant. The units are the same for every value of the block, and

OASIS only reads this field in the first record of each block. If this

field is omitted, then all values are assumed to be in primary units

(section 2.9.0) for this constituent.

factor Number Single A factor that OASIS will multiply by every value in the pattern.

OASIS only reads this field in the first record of each block.

Month Number byte The month of the point in time. See section 4.5.1.

Day Number byte The day of the month of the point in time. See section 4.5.1.

Value Number Single The value of the water quality input at the point in time. See section

4.5.1 for conventions on interpolation of the pattern. The value of the

variable for a simulation period is the value on the last day of the

period.

-173-

Example

C. Table File ID

Contains the name of the time-series file (section 4.6.4) that supplements the inflow database. This table has only one record.

The table is always required. If there are no inflow input variables to be retrieved from a time-series file, then the entry in this

table is irrelevant. It is legal to name a file that is also named in the OCL file with the :TIMEDB: command, or named in one

of the File ID tables of the other static databases.

The OASIS GUI provides an interface to this table when you click on Time Series Data in the Edit menu (section 3.6.2 part

A).

The fields of this table are:

Field Name Type Size Description

time-series file text 64 The name of the time-series file. The name may include path

information, absolute or relative to the run directory.

-174-

Example

4.5.6 INITIAL CONDITIONS DATABASE FILE

The initial condition file contains only one table. The file may be omitted entirely if there are no reservoir nodes.

A. Table Initial Condition

Provides initial values of storage and water quality at reservoir nodes. This table must contain a record for every reservoir

node. If there are no reservoir nodes, then the table can be omitted entirely. The fields Cx and Cx Units are only used if

water quality constituent x is entered in the Concentration table (section 4.5.3 part D), where x is the number assigned to the

water quality constituent. The OASIS GUI links to this table through a control on the Node tab (section 3.7.4).

For discussion of reservoir nodes, see section 2.1.1 part B. For discussion of water quality, see section 2.10.0.

The fields of this table are:

Field Name Type Size Description

Node Number Number Integer The number of the reservoir node.

Storage Number Single The storage at the node at the beginning of the first period of

simulation.

Storage Units Text 9 The units in which the initial storage value is measured. Must be

volume or big volume units. If this field is omitted, then all values are

assumed to be in primary big volume units (section 2.9.0).

Cx Number Single The initial concentration of water-quality constituent x at the node at

the beginning of the first period of simulation. The field is only used if

constituent x is being modeled.

Cx Units Text 9 The units in which the initial concentration of water-quality constituent

x is measured. Must be units defined for constituent x in the table

Concentration (section 4.5.3 part D). If this field is omitted, then all

values are assumed to be in primary units for constituent x. The field

is only used if constituent x is being modeled.

-175-

Example

4.5.7 WEIGHTS DATABASE FILE

A. Table Weight: Arc

Provides weights (section 2.2.3) to apply to arc-flow decision variables. This table should have a record for every arc that

you wish to weight. Arcs that you do not wish to weight do not need a record in this table. Any of the weight values can be

positive, negative, or zero. The priority values must be between 1 and 6. You should always enter a weight on the A segment

of flow that is larger than the weight on the B segment of flow.

The OASIS GUI links to this table through a control on the Arc tab (section 3.7.5).

The fields of this table are:

Field Name Type Size Description

U/S Number Number Integer The node number at the upstream end of the arc.

D/S Number Number Integer The node number at the downstream end of the arc.

A Wt Number Single The weight to apply to segment A of the flow in this arc. This is the

segment of the flow that is below the minimum flow (section 2.4.0 part

B). If you do not wish to apply weight to segment A of this arc, this

field may be left blank. OASIS ignores the value in this field if there is

no minimum flow on this arc, as indicated in the Arc table (section

4.5.3 part C).

A Pri Number Integer The priority level at which to enter the weight on segment A of the

flow. If there is no weight on segment A, then this field may be left

blank.

B Wt Number Single The weight to apply to segment B of the flow in this arc. This is the

segment of the flow that is above the minimum flow (section 2.4.0 part

B). If you do not wish to apply weight to segment B of this arc, this

field may be left blank. OASIS ignores the value in this field if there is

no minimum flow on this arc, as indicated in the Arc table (section

4.5.3 part C).

B Pri Number Integer The priority level at which to enter the weight on segment B of the

flow. If there is no weight on segment B, then this field may be left

blank.

Field Name Type Size Description

-176-

Example

Total Wt Number Single The weight to apply to the total flow in the arc. If you do not wish to

apply weight to the total flow in this arc, this field may be left blank.

Total Pri Number Integer The priority level at which to enter the weight. If there is no weight on

total flow, then this field may be left blank.

B. Table Weight: Storage

Provides weights (section 2.2.3) to apply to reservoir-storage decision variables. This table should have a record for every

reservoir that you wish to weight. Reservoirs that you do not wish to weight do not need a record in this table. Any of the

weight values can be positive, negative, or zero. The priority values must be between 1 and 6. You should always enter a the

weights so that the largest (most positive) is on zone A, then zone B, then zone C, and the smallest on zone D. See section

2.4.0 part H for a discussion of reservoir storage zones.

The OASIS GUI links to this table through a control on the Node tab (section 3.7.4).

The fields of this table are:

Field Name Type Size Description

Node Number Number Integer The number of the reservoir node.

MPO Text 3 Tells OASIS whether the weights will be applied to all MPO steps or

only to the last MPO step. If YES, then the weights are applied to all

MPO steps. If NO or blank, then the weight is only applied to the last

MPO step. See section 2.2.7 for more about MPO. If you are not doing

MPO, then the entry in this field is irrelevant.

A Wt Number Single The weight to apply to zone A of the storage in this reservoir. If you do

not wish to apply weight to zone A of this reservoir, this field may be left

blank. If this is a single-zone reservoir, then the weight shown in this

field is applied to the total storage in the reservoir.

A Pri Number Integer The priority level at which to enter the weight on zone A of the reservoir.

If there is no weight on zone A, then this field may be left blank.

B Wt Number Single The weight to apply to zone B of the storage in this reservoir. If you do

not wish to apply weight to zone B of this reservoir, this field may be left

blank. If this is a single-zone reservoir, OASIS ignores the field.

B Pri Number Integer The priority level at which to enter the weight on zone B of the reservoir.

If there is no weight on zone B, then this field may be left blank.

Field Name Type Size Description

-177-

Example

C Wt Number Single The weight to apply to zone C of the storage in this reservoir. If you do

not wish to apply weight to zone C of this reservoir, this field may be left

blank. If this is a single-zone reservoir, OASIS ignores the field.

C Pri Number Integer The priority level at which to enter the weight on zone C of the reservoir.

If there is no weight on zone C, then this field may be left blank.

D Wt Number Single The weight to apply to zone D of the storage in this reservoir. If you do

not wish to apply weight to zone D of this reservoir, this field may be left

blank. If this is a single-zone reservoir, OASIS ignores the field.

D Pri Number Integer The priority level at which to enter the weight on zone D of the reservoir.

If there is no weight on zone D, then this field may be left blank.

C. Table Weight: Demand

Provides weights (section 2.2.3) to apply to delivery decision variables at demand nodes (section 2.4.0 part D). This table

should have a record for every demand node that you wish to weight. Demand nodes that you do not wish to weight do not

need a record in this table. Any of the weight values can be positive, negative, or zero. The priority values must be between

1 and 6.

The OASIS GUI links to this table through a control on the Node tab (section 3.7.4).

The fields of this table are:

Field Name Type Size Description

Node Number Number Integer The number of the reservoir node.

Wt Number Single The weight to apply to the delivery at this demand node.

Pri Number Integer The priority level at which to enter the weight on the delivery to the

demand node. If there is no weight on the delivery, then this field may

be left blank.

-178-

Example

4.5.8 OCL STATIC DATABASE FILE

This static database stores supplemental input used by OCL. The name of the file is specified with the :STATDB: command

(section 4.7.1 part E) in an OCL input file. When using the GUI, the file must be combined with all the other static databases

in statdata.mdb (section 3.3.7).

A. Table Lookup

Provides “tables”, “curves”, or “functions” that can be referred to with the Lookup and RevLookup function in OCL. The

table gives the value of a dependent variable as a function of an independent variable. Each function must be entered in a

contiguous block. You may specify whether the function works by linear interpolation, or whether it rounds to the upper or

lower breakpoint. See section 4.7.6 part M for more on the Lookup function and section 4.7.6 part Q for more on the

RevLookup function.

The OASIS GUI links to this table through a control on the OCL tab (section 3.7.6). It is recommended that you use the OCL

Lookup dialog box (section 3.8.5) to edit the data in this table.

The fields of this table are:

Field Name Type Size Description

Name Text 32 The name of the lookup table, which can be used in the OCL Lookup

function. This record must be identical for every record in the block,

or, if you are not using the GUI, it can be left blank in all but the first

record. If you are using the GUI, then this field can never be blank.

Interp Text 7 The method of getting a return value when the input value does not fall

on one of the given breakpoints. This record will only be read from the

first record of each block. The same method will be used between all

breakpoints for a single function. Choices are INTERP, UPPER, or

LOWER, See notes below.

Independent Number Single The value of the independent (input) variable at the breakpoint. The

values must be ascending throughout the block.

-179-

Example

Dependent Number Single The value of the dependent (output) variable for the given value of the

independent variable in the same row. If the function is used for the

OCL RevLookup function, then the values must be either decreasing

throughout the block or increasing throughout the block. If the

function is not used for the OCL RevLookup function, then the

dependent values do not have to follow any trend.

Notes:

 Interp field

If the argument to the OCL lookup function is exactly equal to one of the values in the Independent field, then the

corresponding value from the Dependent field will be returned, regardless of the interpolation method. If the

argument does not equal one of the values in the Independent field, then the return value depends upon the

interpolation method entered in the Interp field. If UPPER , the return value will be the dependent value

corresponding to the next highest independent value. If LOWER , the return value will be the dependent value

corresponding to the next lowest independent value. If INTERP, OASIS will linearly interpolate between the next

highest and next lowest values to get the return value.

B. Table Pattern

Provides time-pattern input data that can be referred to with pattern variables in OCL. By setting the values in certain flag

fields, you specify what method OASIS should use to derive the period values from the input points. See section 4.7.4 for

more on the pattern variable. This table follows the conventions for pattern static input. See section 4.5.1 for a discussion of

these conventions.

The OASIS GUI links to this table through a control on the OCL tab (section 3.7.6). It is recommended that you use the

pattern dialog box (section 3.8.3) to edit the data in this table.

-180-

The fields of this table are:

Field Name Type Size Description

Name Text 32 The name of the pattern, which is used to identify the pattern when

using the pattern variable.

EOP Number Byte Enter a 1 for the end-of-period method. Enter 0 to turn off the end-of-

period method. See notes below.

flow to vol Number Byte Enter a 1 if the data in the value field is a flow rate that must be

converted to volume per period, and it should be converted from

primary flow units to primary volume units (section 2.9.0). Otherwise

enter 0. See notes below.

rate Number Byte Enter a 1 if the data in the value field is a flow rate that must be

converted to volume per period, but no conversion factors should be

assumed. Otherwise, enter 0. See notes below.

factor Number Single A factor that OASIS will multiply by every value in the pattern.

Month Number byte The month of the point in time. See section 4.5.1.

Day Number byte The day of the month of the point in time. See section 4.5.1.

value Number Single The value of the pattern variable at the point in time. See section 4.5.1

for conventions on interpolation of the pattern.

Notes:

 Flag fields: EOP, flow to vol, and rate

Only one of these three fields should have a value of 1 — the others should be zero. If more than one of the fields

has a value of 1, then the EOP field will override all others, and the flow to vol flag will override the rate field. If

none of the fields have a value of 1, then OASIS will assume that the values being entered have been integrated over

each time span (see section 4.5.1).

 EOP field

If 1 is entered, the end-of-period method will be used. This means OASIS first interpolates between the input points,

and then the value for each simulation period is computed as the value at the end of the period. See section 4.5.1 for

more on time-pattern conventions.

 Flow to volume field

If 1 is entered, OASIS will assume that the values are entered in primary flow units, and it will internally convert

the pattern into primary volume units per simulation period. See section 4.5.1 for more on time-pattern

conventions.

 Rate field

If 1 is entered, OASIS will assume that the values are entered as flow rates, in units of X per day, and it will

internally convert the pattern into volume per period in units of X. See section 4.5.1 for more on time-pattern

conventions. The only difference between this flag and the previous Flow to volume flag is that with this flag, no

automatic conversion factor is applied. You may apply any factor you like in the factor field.

-181-

4.5.9 STATIC DATABASE TABLES USED BY THE OASIS GUI

The OASIS GUI reads the single static database file statdata.mdb (section 3.3.7). The tables described below are necessary

for the OASIS GUI but are not read by model.exe or the post-processors.

C. Table Constants

Contains substitute values that are automatically written to an OCL file by the GUI. The OASIS GUI links to this table

through a control on the OCL tab (section 3.7.6). This table is not read by model.exe or the post-processor programs.

When a run is saved from the GUI, each record in this table is used to create a substitute value (section 4.7.1 part I). The

substitutes are created in a file specified by the GUI.ini parameter _OCLConst_fName (section 3.3.5). If _OCLConst_fName

is not entered into GUI.ini, then the substitutes are written to the file constants_inc.ocl in the subfolder OCL of the run folder.

In order to take advantage of these substitutes, an :INCLUDE: statement (section 4.7.1 part H) for that OCL file must appear

somewhere in the main OCL file. The OASIS GUI does not create any :INCLUDE: statements for this purpose.

The fields of this table are:

Field Name Type Size Description

Constant_Name Text 50 The substitute name for the user-defined constant, without the square

brackets at the beginning and end of the name.

Constant_Value Number Double The value of the user-defined constant.

Constant_Description Number Single A description of the constant, which is incorporated into an OCL

comment (section 4.7.0 part D).

D. Table zzGUI_Status

Contains several flags indicating the status of the run.. This table is not read by model.exe or the post-processor programs.

The fields of this table are:

Field Name Type Size Description

Lock Yes/No If Yes, then the GUI prevents any change to model input. See section 3.4.9.

PostExe Yes/No The GUI sets this value to Yes when the model is executed. The GUI sets

this value to No when a run is created.

OutputCurrent Yes/No The GUI sets this value to indicate whether the model output matches the

model input. If Yes, then the output is consistent with the input. If No,

then the output is not consistent with the input. See section 3.9.0.

-182-

E. Table zzGUI_Page

Contains the parameters defining the virtual page on which the GUI draws the model schematic (section 3.7.1). This table is

not read by model.exe or the post-processor programs. Most of these parameters are controlled through the Page Settings

dialog in the GUI interface (section 3.7.1 part A).

The fields of this table are:

Field Name Type Size Description

PgColor Number Long

Integer

Numeric code for the background color of the virtual page. You

should rely on the GUI to select colors.

PgWid

PgHt

Number Integer The width and height of the virtual page, where 1440 units is

equivalent to one inch on the printed page.

MargColor Number Long

Integer

Numeric code for the color of the margin lines that are drawn on the

virtual page. You should rely on the GUI to select colors.

MargLf

MargTop

MargRt

MargBot

Number Integer The distances of the left, top, right, and bottom margins from the

edges of the virtual page, where 1440 units is equivalent to one inch

on the printed page.

MargVis Yes/No If Yes then the margins are indicated by dotted lines on the virtual

page. If No, then the margins are not shown.

CentX

CentY

Number Integer Coordinates indicating the position of the virtual page in the

schematic window. In the GUI interface, these values are

determined by scrolling the schematic.

Zoom Number Integer The magnification level of the schematic window.

kbZoom Number Integer The magnification level of the schematic keybar.

F. Table zzGUI_NodeType

Contains a list of each node category that is displayed in the GUI schematic. This table is not read by model.exe or the post-

processor programs. The GUI does not provide an interface for editing this data. The fields of this table are:

Field Name Type Size Description

SubNum Number Byte The number of the node category. These should simply be assigned

in order, so that the first record is 1, the second record is 2, etc.

Type Number Byte The node type that this category indicates. The values are:

 1 Junction

 2 Demand

 3 Reservoir

Name Text 30 The name of the node category.

-183-

G. Table zzGUI_ArcType

Contains a list of each arc category that is displayed in the GUI schematic. This table is not read by model.exe or the post-

processor programs. The GUI does not provide an interface for editing this data.

The fields of this table are:

Field Name Type Size Description

SubNum Number Byte The number of the arc category. These should simply be assigned in

order, so that the first record is 1, the second record is 2, etc.

Name Text 30 The name of the arc category.

H. Table zzGUI_InflowType

Contains a list of each inflow category that is displayed in the GUI schematic. This table is not read by model.exe or the post-

processor programs. The GUI does not provide an interface for editing this data.

The fields of this table are:

Field Name Type Size Description

SubNum Number Byte The number of the inflow category. These should simply be

assigned in order, so that the first record is 1, the second record is 2,

etc.

Name Text 30 The name of the inflow category.

-184-

I. Table zzGUI_Text

Contains a description of each text type that is associated with nodes and arcs, and a list of all independent text boxes on the

GUI schematic. This table is not read by model.exe or the post-processor programs. The descriptions of independent text

boxes are edited through the GUI interface, but the text types that are associated with nodes and arcs can not be edited

through the GUI interface.

The fields of this table are:

Field Name Type Size Description

obID Number Long

Integer

The object identification number. The value is not important except

that it must be different than the value in all other records.

Category Number Byte A code that indicates what type of text the record describes.

 3 Independent text box. The Index field is ignored.

 5 The text of the node number. The Index field is the

number of the node category.

 7 The text of the node name. The Index field is the number

of the node category.

 8 The text of the arc name. The Index field is the number

of the arc category.

Index Number Integer The meaning of this field depends on the entry in the Category field,

as described above.

Text Text 255 If the Category field is 3, this is the text of the independent text box.

Otherwise, this field is ignored.

FontName Text 40 The font name. Font names are case-sensitive. We recommend that

you only use the most common fonts to avoid compatibility issues

when sharing files between computers.

Size Number Single The font size.

Bold Yes/No If Yes, the text is in bold.

Italic Yes/No If Yes, the text is in Italic.

Under Yes/No If Yes, the text is underlined.

x

y

Number Long

Integer

If the Category field is 3, these are the coordinates of the

independent text box. Otherwise, this is the distance of the text from

the center of the node or arc.

Angle Number Single If the Category field is 3 or 5, this is the rotation angle of the text in

degrees counterclockwise from horizontal. Otherwise, this field is

ignored.

FontColor Number Long

Integer

Numeric code for the color of the text

-185-

J. Table zzGUI_Shape

Contains a description of each shape that is associated with nodes and arcs, and a list of all independent shapes on the GUI

schematic. This table is not read by model.exe or the post-processor programs. The descriptions of independent shapes are

edited through the GUI interface, but the shapes that are associated with nodes and arcs can not be edited through the GUI

interface.

The fields of this table are:

Field Name Type Size Description

obID Number Long

Integer

The object identification number. The value is not important except that

it must be different than the value in all other records.

Category Number Byte A code that indicates what type of text the record describes.

 3 Independent shape. The Index field is ignored.

 5 The shape of a node symbol. The Index field is the number

of the node category. There can be more than one shape for

any node symbol. If there is more than one shape for a

symbol, the shape that appears first in the table is drawn first,

and subsequent shapes are drawn on top of earlier shapes.

 9 The shape of an inflow symbol (inflows are represented as

arrows that are drawn from this shape to a node symbol).

The Index field is the number of the inflow category. There

can only be one shape per inflow symbol.

Index Number Integer The meaning of this field depends on the entry in the Category field, as

described above.

Shape Number Byte Numeric code for the shape type:

 2 RECTANGLE

 4 ELLIPSE

 8 POLYLINE

 9 POLYGON

Ht

Wd

Number Integer The height and width of the shape.

x

y

Number Long

Integer

If the Category field is 3, the x and y position of the shape on the page.

If the Category field is 5, the offset of the shape from the center of the

symbol. Otherwise, this field is ignored.

LineColor Number Long

Integer

Numeric code for the color of the shape’s outline

LineWidth Number Single The width of the shape’s outline

-186-

LineStyle Number Byte Numeric code for the line style of the shape’s outline.

 0 Solid

 1 Dash

 2 Dot

 3 Dash dot

 4 Dash dot dot

 5 None

FillColor Number Long

Integer

Numeric code for the color of that fills the shape

FillStyle Number Byte Numeric code for the line style of the shape’s outline.

 0 Solid

 1 Transparent

 2 Horizontal lines

 3 Vertical lines

 4 Forward diagonal lines

 5 Backward diagonal lines

 6 Crossed lines

 7 Diagonal crossed lines

BackColor Number Long

Integer

The background color of the shape. Only applies if FillStyle field is 2-7

and the BackStyle field is 1.

BackStyle Number Byte 0 if the background is transparent, 1 if the background is opaque. Only

applies if FillStyle field is 2-7.

numPar Number Byte The number of the p01...p16 fields to be read. This is the number of

points in the polygon or polyline times two. The maximum value is 16.

Only applies if the Shape field is 8 or 9.

p01

p02

...

p15

p16

Number Integer The x and y coordinates of the points for a polygon or polyline, where

(0,0) is the top left corner of the shape. Only applies if the Shape field

is 8 or 9. If the value of the numPar field is n, then the first n of these

fields are read, and the rest are ignored. The fields with odd-numbered

names are the x coordinates, and the fields with even-numbered names

are the y coordinates.

-187-

K. Table zzGUI_Link

Contains a description of each link (links are usually shown as arrows, but they can use other symbols besides arrowheads)

that is associated with arcs and inflows. This table is not read by model.exe or the post-processor programs. No part of this

table can be edited through the GUI interface.

The fields of this table are:

Field Name Type Size Description

obID Number Long

Integer

The object identification number. The value is not important except

that it must be different than the value in all other records.

Category Number Byte A code that indicates what type of symbol the link is used for:

 6 The link definition is used for an arc category. The Index

field is the number of the arc type.

 9 The link definition is used for an inflow category. The

Index field is the number of the inflow type.

Index Number Integer The meaning of this field depends on the entry in the Category field, as

described above.

LkSty_str Number Byte Numeric code for the style of the start (str) or end of the link:

LkSty_end 0 None

 1 Rectangle

 2 Diamond

 3 Octagon

 4 Ellipse

 5 Open Arrow

 6 Stealth Arrow

 7 Fill Arrow

LkWid_str

LkWid_end

Number Single Width of the symbol at the start (str) or end of the link.

LkLen_str

LkLen_end

Number Single Length of the symbol at the start (str) or end of the link.

LineWid Number Single The width of the line

LineSty Number Byte Numeric code for the line style.

 0 Solid

 1 Dash

 2 Dot

 3 Dash dot

 4 Dash dot dot

 5 None

Color Number Long

Integer

Numeric code for the color of the line and outline of the link

-188-

FillColor Number Long

Integer

Numeric code for the color that fills the shape at the start and/or end of

the link

LkFlags_str

LkFlags_end

Number Byte These fields contain flags for setting optional features of the start (str)

or end of the link. The value for this field is created by adding the

following values.

Contact

Add 2 if the link start or end should just touch the edge of

the node symbol. Add 0 if the link start or end should

overlap the node symbol.

Filled
Add 4 if the link start or end should be filled. Add 0 if

the symbol should not be filled.

Inverted
Add 8 if the link start or end should have an inverted

arrowhead. Add 0 for normal arrowhead.

L. Table zzGUI_Image

Contains a description of each image from an image file that appears on the schematic. This includes independent (floating)

images, and no more than one background image. This table is not read by model.exe or the post-processor programs. The

image information is edited through the GUI interface.

The fields of this table are:

Field Name Type Size Description

obID Number Long

Integer

The object identification number. The value is not important except that

it must be different than the value in all other records.

Category Number Byte A code that indicates what type of image the record describes.

 3 Independent image. The Index field is ignored.

 10 Background image. There can be only one background

image. The Index field is ignored.

Index Number Integer The meaning of this field depends on the entry in the Category field, as

described above.

File Text 200 The path and file name of image file. The path can be absolute or

relative to either the home folder or the run folder, as determined by the

RelHome and RelRun fields.

RelHome Yes/No Yes if the path of the image file is given in a form relative to the OASIS

home folder.

RelRun Yes/No Yes if the path of the image file is given in a form relative to the OASIS

run folder.

Ht

Wd

Number Integer The height and width of the image on the schematic.

x

y

Number Long

Integer

The x and y coordinates of the center of the image on the schematic.

-189-

M. Table zzGUI_ZOrder

Records the Z-order of every object on the schematic. The Z-Order is a complete list of which object appear in front of other

objects. This table is not read by model.exe or the post-processor programs. This information is edited through the GUI

interface by selecting Move to Front or Move to Back on specific objects. There should be no reason to edit this information

outside the GUI.

The fields of this table are:

Field Name Type Size Description

Category Number Byte The value in this field is always 11 for objects on the schematic.

Index Number Integer The value in this field is always 0 for objects on the schematic.

Order Number Integer The Z-order of the object, where higher numbers are for objects that

are in front of objects with lower numbers.

ObTyp Number Byte A code that indicates what type of symbol the link is used for:

 1 Node Symbol

 2 Arc Symbol

 3 Inflow Symbol

 4 Node Name

 5 Arc Name

 6 Shape

 7 Text

 8 Image

obID Number Integer The number that identifies this object from others of its type.

obID2 Number Integer The second number that identifies this object from others of its type.

-190-

4.6.0 TIME-SERIES DATABASES

The time-series database files are all in HEC-DSS format, also referred to simply as DSS. DSS is a database system that is

specially designed to store time-series data, and it is a standard for many in the water-resources engineering field. DSS files

can be viewed and edited using DSS-utility programs that are freely distributed by HEC, the U.S. Army Corps of Engineers

Hydrologic Engineering Center. HydroLogics can supply copies of DSS utilities and their user manuals. The software can all

be acquired from the HEC website: http://www.hec.usace.army.mil.

There are three classes of software for editing HEC-DSS data:

 MS-DOS Utilities

These utilities have an outdated text-command interface. The functionality of the MS-DOS utilities for HEC-DSS

are superseded by HecDssVue and the Excel plugin, although it is still convenient to use the MS-DOS utilities for

specialized applications. The programs in the package that HydroLogics has found most useful are DSSUTL,

DSSTS, and DSSITS. DSSTS and DSSITS can be used to transfer data from a command prompt or from an ASCII

text file to DSS format. DSSTS is for regular-interval data and DSSITS is for irregular-interval data. DSSUTL can

do many useful tasks, including viewing, editing, or deleting DSS data, copying it from one DSS file to another, or

writing it to ASCII text. Refer to the HEC-DSS user manual for more information.

 HecDssVue

HecDssVue is a graphical, Java-based utility program for HEC-DSS. HecDssVue proves very useful for viewing

and organizing the time-series data. However, it lacks any way of importing data into HEC-DSS. For that, we

recommend the Excel plugin. Refer to the HecDssVue user manual for more information about HecDssVue.

 MS Excel Data Exchange Add-in

This utility is used to export regular-interval time-series data from an Excel File into a HEC-DSS file. The utility

also makes it possible to import data from HEC-DSS to Excel, although for that purpose we find it easier just to copy

the data from HecDssVue to the Windows clipboard, and paste it into Excel. Refer to the user manual of the Excel

add-in for more info.

An OASIS run is associated with three time-series database files that are treated as supplements of the static database files

(section 4.5.0). For example, the demand file contains a table called File ID, which contains the name of a time-series file.

This time-series file can store time-series demand values. The system and inflow databases may also be supplemented by

time-series files named in a File ID table. If you combine static databases which refer to time-series databases, then the

supplemental time-series databases are automatically combined. For example, if you combine the system file and the inflow

file, then the combined database only contains one File ID table. The time-series file that it names is the combined system-

and inflow-time-series file.

When using the OASIS GUI, all three of the time-series databases that supplement the static data are combined into a single

file. You can specify this file by clicking on Time Series Data in the Edit menu (section 3.6.2 part A).

OCL input may also be supplemented by time-series databases. You may name several time-series database files with the

:TIMEDB: command (section 4.7.1 part F). It is legal to use the same file to supplement the static database information and

to supplement OCL — just name the same time-series database file for both. See section 4.6.5 for more about OCL time-

series databases. The OASIS GUI does not provide a direct interface for specifying these files – they must be edited in the

OCL files themselves.

4.6.1 CONVENTIONS IN TIME-SERIES DATABASES

You should refer to the HEC-DSS user manual for a complete discussion of how DSS works. Here we discuss the

conventions that OASIS uses when reading and writing DSS data.

 Year scheme

Unlike OASIS, DSS will not label the year component of a date on any special year schemes. See section 2.8.5 for

explanation of the year scheme. All DSS data is labeled on a January-December year. For example, suppose that

-191-

you are simulating with an October-September year scheme--the water year. In DSS, you will find October of water

year 1922 under the label October 1921. OASIS knows how to read the DSS data and translate it into the year

scheme that you are using.

 Units of measurement

OASIS reads the units field in a DSS record, and it converts to the proper units if it can. The documentation of each

of the time-series records below tell what units are recognized.

 Time steps

OASIS no longer requires that the time-series input use the same time-step scheme as the simulation (versions

previous to OASIS 3.0 did require this). Furthermore, OASIS can handle “irregular” DSS time steps. For example,

if you are simulating at a monthly time step, it is perfectly legal to have OASIS read DSS data from a time series at a

daily time step, and another time series at an irregular time step of once every three months. When OASIS reads

these time-series records, it converts the data to the time step of simulation. The methods of redistributing the input

data to the simulation time steps is the same as for pattern input data (see section 4.5.1 for conventions).

 DSS pathnames

Every record in a DSS database has a pathname. The pathname has six parts, labeled A, B, C, D , E, and F. Each

pathname part contains a particular type of identifying information about the record.

When creating DSS data for OASIS, you must adhere to the naming rules that OASIS follows. The rules for each

pathname part are:

 A OASIS ignores the A-part. You can use whatever is useful for you in the A-part.

 B Location information for the record. Usually the node or arc number, depending upon the data

type. See sections 4.6.2 through 4.6.5 for details.

 C The type of data, such as DEMAND or INFLOW. See sections 4.6.2 through 4.6.5 for details.

 D The date. DSS programs automatically assign this part of the pathname and ignore your attempts

to modify it.

 E The time-step length (1MON , 1WEEK, or 1DAY). HEC’s DSS utility programs apply certain

conventions to the time-step length (see the DSS manuals).

 F If you have entered a value in the F Path field of the Declare Timeseries table (section 4.5.3 part

P) for a given record, then the F-part must match the entry in the table. If you did not enter a value

into the F Path field, then OASIS ignores the F-part.

DSS automatically breaks a time-series up into data blocks, each covering a separate time interval. If you look at

the catalog of a database with DSSUTL, you will generally see many records which have identical pathnames except

for the D-part. For OASIS’ purposes, these all constitute one record.

The D- and E-parts are dictated by DSS programs. OASIS always ignores the A-part. Thus, you are left B- and C-

parts, and sometimes the F-part, to identify the record. When OASIS searches the DSS database for a particular

record, it selects the first record in the catalog which exactly matches the B- and C-parts of the pathname. If an F-

part has been specified, then the selected record must match the F-part as well. If there are multiple records which

match OASIS’ search criteria (for example, two records with identical pathnames except for the A-part) then OASIS

selects the first one in the catalog. You cannot predict which one this will be, so do not put multiple records into the

database if they will both match the pathname parts that OASIS looks for. If you must keep different copies of a

record in a single database, give them different F-parts, and specify the F-part in the Declare Timeseries table

(section 4.5.3 part P).

-192-

4.6.2 SYSTEM TIME-SERIES FILE

The name and path of the system time-series file is given in the File ID table of the system database (section 4.5.3 part M).

This file may be the same file as the demand, inflow, or OCL time-series files. The following data may be found in the

system time-series file:

 Minimum flow (target) (C-part: MIN_FLOW)

 Maximum flow (C-part: MAX_FLOW)

 Maximum reverse flow (C-part: MAXREV_FLOW)

 Reservoir evaporation rate (C-part: EVAP)

 Reservoir upper rule curves (C-part: UPPER_RULE)

 Reservoir lower rule curves (C-part: LOWER_RULE)

A. Time-series minimum flow

See section 4.6.1 for general conventions on time-series input.

B part [bbb].[eee]

C part MIN_FLOW

Description The minimum flow target in the arc that goes from [bbb] to [eee] .

Conditions for use Enter TIME SERIES in the Min Flow field in the Arc table (section 4.5.3 part C) for arc

[bbb] .[eee] .

Units OASIS converts into primary volume units per period. May be entered in volume, big volume,

or flow units (section 2.9.0). Check that the label in the Units field is correct.

Example Pathname /A_PATH/111.245/MIN_FLOW/01JAN1990/1WEEK//

B. Time-series maximum flow

See section 4.6.1 for general conventions on time-series input.

B part [bbb].[eee]

C part MAX_FLOW

Description The maximum flow in the arc that goes from [bbb] to [eee] .

Conditions for use Enter TIME SERIES in the Max Flow field in the Arc table (section 4.5.3 part C) for arc
[bbb] .[eee] .

Units OASIS converts into primary volume units per period. May be entered in volume, big
volume, or flow units (section 2.9.0). Check that the label in the Units field is correct.

Example Pathname /A_PATH/196.005/MAX_FLOW/01JAN1990/1DAY//

-193-

C. Time-series maximum reverse flow

See section 4.6.1 for general conventions on time-series input.

B part [bbb].[eee]

C part MAXREV_FLOW

Description The maximum reverse flow in the arc that goes from [bbb] to [eee] .

Conditions for use Enter TIME SERIES in the MaxRev Flow field in the Arc table (section 4.5.3 part C) for arc
[bbb] .[eee] .

Units OASIS converts into primary volume units per period. May be entered in volume, big volume,
or flow units (section 2.9.0). Check that the label in the Units field is correct.

Example Pathname /A_PATH/196.205/MAXREV_FLOW/01JAN1990/1MON//

D. Time-series reservoir evaporation rate

See section 4.6.1 for general conventions on time-series input.

B part [nnn]

C part EVAP

Description The evaporation rate at reservoir node [nnn] .

Conditions for use Enter TIME SERIES in the Evaporation Type field in the Evaporation table (section 4.5.3 part
K) for node [nnn] .

Units OASIS converts into primary evaporation units per period. May be entered in evaporation or
elevation units (section 2.9.0). Check that the label in the Units field is correct.

Example Pathname /A_PATH/746/EVAP/01JAN2010/1WEEK//

E. Time-series reservoir upper-rule curve

See section 4.6.1 for general conventions on time-series input.

B part [nnn]

C part UPPER_RULE

Description The upper rule at reservoir node [nnn] .

Conditions for use Enter TIME SERIES in the Upper Rule field in the Reservoir table (section 4.5.3 part H) for
node [nnn] .

Units OASIS converts into primary volume units. May be entered in volume, big volume, elevation,
or evaporation units (section 2.9.0). Check that the label in the Units field is correct.

Example Pathname /A_PATH/746/UPPER_RULE/01JAN2012/1DAY//

-194-

F. Time-series reservoir lower-rule curve

See section 4.6.1 for general conventions on time-series input.

B part [nnn]

C part LOWER_RULE

Description The lower rule at reservoir node [nnn] .

Conditions for use Enter TIME SERIES in the Lower Rule field in the Reservoir table (section 4.5.3 part H) for
node [nnn] .

Units OASIS converts into primary volume units. May be entered in volume, big volume,
elevation, or evaporation units (section 2.9.0). Check that the label in the Units field is
correct.

Example Pathname /A_PATH/746/LOWER_RULE/01JAN2010/1MON//

4.6.3 DEMAND TIME-SERIES FILE

The name and path of the demand time-series file is given in the File ID table of the demand database (section 4.5.4 part C).
This file may be the same file as the system, inflow, or OCL time-series files. Only one type of data is found in the demand
time-series file:

A. Time-series demand

See section 4.6.1 for general conventions on time-series input.

B part [nnn]

C part DEMAND

Description The demand at demand node [nnn] .

Conditions for use Enter TIME SERIES in the Demand Type field in the Demand table (section 4.5.4 part A) for
node [nnn] .

Units OASIS converts into primary volume units per period. May be entered in volume, big
volume, or flow units (section 2.9.0). Check that the label in the Units field is correct.

Example Pathname /A_PATH/830/DEMAND/01JAN1987/1DAY//

-195-

4.6.4 INFLOW TIME-SERIES FILE

The name and path of the system time-series file is given in the File ID table of the system database (section 4.5.5 part C).
This file may be the same file as the system, demand, or OCL time-series files. The following data may be found in the
inflow time-series file:

 Inflow to a node (C-part: INFLOW)

 Concentration input at a node (C-part: [name]_INPUT)

 Concentration input at an arc (C-part: [name]_INPUT)

A. Time-series inflow

See section 4.6.1 for general conventions on time-series input.

B part [nnn]

C part INFLOW

Description The inflow to node [nnn] from outside the system.

Conditions for use Enter TIME SERIES in the Inflow field in the Node table (section 4.5.3 part B) for node
[nnn] .

Units OASIS converts into primary volume units per period. May be entered in volume, big
volume, or flow units (section 2.9.0). Check that the label in the Units field is correct.

Example Pathname /A_PATH/084/INFLOW/01JAN1990/1MON//

B. Time-series concentration input at a node

See section 4.6.1 for general conventions on time-series input.

B part [nnn]

C part [name]_INPUT

Description The concentration input at node [nnn] for the water quality constituent [name] .

Conditions for use Water quality constituent [name] must be entered into the Concentration table (section 4.5.3
part D). Enter TIME SERIES in the Cx_input field in the Node table for node [nnn] (section
4.5.3 part B), where x is the number of water quality constituent [name] .

Units OASIS converts into primary units for water quality constituent [name] . May be entered in
any recognized units for water quality constituent [name] (section 2.9.0). Check that the
label in the Units field is correct.

Example Pathname /A_PATH/084/TDS_INPUT/01JAN1995/1DAY//

-196-

C. Time-series concentration input at an arc

See section 4.6.1 for general conventions on time-series input.

B part [bbb].[eee]

C part [name]_INPUT

Description The concentration input at the arc that goes from node [bbb] to node [eee] for the water
quality constituent [name] .

Conditions for use Water quality constituent [name] must be entered into the Concentration table (section 4.5.3
part D). Enter TIME SERIES in the Cx_input field in the Arc table for arc [bbb].[eee]
(section 4.5.3 part C), where x is the number of water quality constituent [name] .

Units OASIS converts into primary units for water quality constituent [name] . May be entered in
any recognized units for water quality constituent [name] (section 2.9.0). Check that the
label in the Units field is correct.

Example Pathname /A_PATH/084.977/TDS_INPUT/01JAN1930/1WEEK//

4.6.5 OCL TIME-SERIES FILE

The name and path of an OCL time-series file is given with the :TIMEDB: command in the OCL input file (section 4.7.1 part
F). A single model run may use up to ten OCL time-series files. Any of the OCL time-series files may be the same file as the
system, demand, or inflow time-series files. The only data that OASIS takes from the OCL time-series file are the OCL
timesers variables (section 4.7.4). When OASIS reads the OCL time-series files, it searches for the timesers variables in each
OCL time-series file in the order that the :TIMEDB: commands were entered. Once it finds a variable, it stops searching for
that variable. Thus, if you enter variables with identical pathnames into different OCL time-series files, OASIS will use the
first one it finds.

A. OCL time-series input

See section 4.6.1 for general conventions on time-series input.

B part [B part]

C part [C part]

Description A time-series input variable referred to in OCL as
timesers([B part] /[C part]) (see section 4.7.4).

Conditions for use None.

Units OASIS converts into primary volume units per period. May be entered in volume, big
volume, or flow units (section 2.9.0). Check that the label in the Units field is correct. For
this variable, you may wish to enter NONE or a unit name that is not recognized, so that no
conversion is performed. Elevation, surface area, and evaporation units are not recognized,
so no conversion is performed on them. However, for values measured in any type of units,
you may specify non-standard conversion methods using the EOP, Rate, and Avg, fields in
the Declare Timeseries table (section 4.5.3 part P).

Example Pathnames The variables with these pathnames

 /A_PATH/830/TARGET_STORAGE/01JAN1987/1WEEK//
 /A_PATH//YEAR_TYPE/01JAN1987/1MON//
 /A_PATH/EAA/PUMP_DEMAND/01JAN1987/1DAY/RANDOM-F/

would be referred to in OCL with these names:

 timesers(830/TARGET_STORAGE)
 timesers(/YEAR_TYPE)
 timesers(EAA/PUMP_DEMAND)

-197-

4.7.0 OPERATIONS CONTROL LANGUAGE (OCL)

See section 2.5.0 for an introduction to OCL. The OCL input is entered into an ASCII text file, named in the control file
(section 4.4.0). Although a single OCL file is named in the control file, this file may link to many more files through the OCL
:INCLUDE: meta command (section 4.7.1 part H). OCL conventions are also used in the Onevar input file (section 6.1.3).

This section introduces five basic concepts of OCL:
A. General OCL syntax, including words and whitespace.
B. Quotation marks.
C. Square brackets and substitute names.
D. Comment markers.
E. Simulation commands.
F. Meta Commands.
G. Sections of the OCL file

A. General OCL syntax

Many OCL syntax forms are given in the following sections. In the syntax forms, text in bold must appear in the OCL input
file exactly as shown. Italic text in [brackets] describes what you would place in that position. For example, the form:

:SUBSTITUTE: [[name]] = [replacement text]

Is a generalized form for this example:

:SUBSTITUTE: [SHASTA] = 004

where [replacement text] = “004" and [name] = “Shasta”.

OASIS reads the text of the OCL input as a series of words, which can be variable names, command names, numbers,
mathematical symbols, or special keywords. In versions of OASIS previous to version 3.4.0, it was mandatory that every
word had to be separated from other words by whitespace. That is no longer the case. You can use whitespace to separate
words as you choose, but it is not mandatory.

Whitespace can take the form of one or more space characters, tab characters, or carriage-returns. There are some words,
such as variable names, that may contain several pieces of modifying information, “suffixes”, that cannot be separated by
whitespace. In the following example of an OCL expression, notice how spaces, multiple spaces, and carriage-returns are all
legally used as whitespace.

pattern(fish_minimum) + flow320.180(-1) +flow320.180(-2)
 - timesers(LAKE/FORCAST_INFLOW)

In the above example, we see two plus signs and a minus sign. Each is a distinct word in the expression. Then there are four
OCL variables:

 pattern(fish_minimum)

 flow320.180(-1)

 flow320.180(-2)

 timesers(LAKE/FORCAST_INFLOW)

Each is a complete word that cannot be broken apart by whitespace. For example, in the first variable, the name
fish_minimum is an identifier for the pattern variable. The syntax of the pattern variable specifies that the name of the pattern
must be attached to the word pattern, within parentheses. If you had inserted whitespace, such as this:

pattern (fish_minimum)

then OASIS would not be able to read the name of the pattern, and it would report an error.

There are no requirements for aligning the input in columns or rows. OCL is never sensitive to upper-case or lower-case.

When node numbers are given in OCL, they must always be in three-digit form. For example, node 94 must be given as
094.

-198-

B. Quotation marks

Quotation marks can be used to enter text absolutely literally. When text is in quotes, OASIS does not recognize comment
markers (section 4.7.0 part D), substitute names (section 4.7.1 part I), or whitespace (section 4.7.0 part A). If a word begins
with a quotation mark, then the next quotation mark OASIS finds is the end of the word (and the word cannot end any other
way). If a word does not begin with a quotation mark, OASIS considers the word to have ended if it finds a quotation mark.
Thus, there is no way that a word can be partly inside quotes and partly outside of quotes.

The quotation marks themselves are never stored as part of the word.

Quotation marks are primarily useful for entering a substitution text (section 4.7.1 part I) or a file path that contains
whitespace. You can also use them to apply characters that would otherwise trigger an OCL-input error. For example, in the
syntax for a :FOR: keyword, the list of replacement texts is separated by commas. If you want to define a replacement text
that contains a comma, you will have to put quotes around that particular text.

C. Square brackets and substitute names

Substitute names (section 4.7.1 part I) are text codes that stand in for something else. OASIS internally converts a substitute
name into a replacement text as it reads it. The convention of OCL is that square brackets are used to enclose a substitute
name, so whenever OASIS finds square brackets, it must determine whether a substitution must be applied. Therefore,
OASIS insists all square brackets appear in matching pairs, even if they are not part of a defined substitute name. OASIS
generates an OCL error message if it cannot find a match for a square bracket. This rule is suspended inside quotation marks
(section 4.7.0 part B) and in the Onevar title text (section 6.1.9 part A). Naturally, it is also ignored inside of comment
markers (section 4.7.0 part D).

D. Comment markers

You can insert as much description as you desire through the use of comment markers. Comment markers can be inserted
anywhere in the OCL input file, and they do not interfere with the flow of syntax outside the markers. OASIS ignores text
that is marked as being in a comment, so that text does not have to follow any OCL syntax rules, including rules about the use
of quotation marks or square brackets. A comment can be of any length and there is no limit to the number of times that
comment markers can be used.

There are two types of comment markers:

 Block comment markers: The characters /* mark the beginning of a block comment, and */ marks the end of the
block comment. Once the program encounters the start-of-comment marker (/*), it ignores all text until it
encounters an end-of-comment marker (*/) (except for new comment markers). Thus, every start-of-comment
marker must be paired to one end-of-comment marker and vice-versa. The block comment may span multiple lines,
or it may occupy only part of a line. Block comments can be nested inside of other block comments. A block
comment can contain a line comment. However, a block comment can not begin or end inside of a line comment.

 Line comment markers: The characters // mark the beginning of a line comment, and the comment includes all text
until the end of the line. Thus, this kind of comment can not span multiple lines. A block comment can contain line
comments. However, a block comment can not begin or end inside of a line comment.

For example, these lines will be completely ignored:

/* pattern(fish_minimum) + flow320.180(-1) + flow320.180(-2)
 /*- timesers(LAKE/FORCAST_INFLOW)*/
*/

OASIS will treat this line:

pattern(fish_minimum) /* + flow320.180(-1) */ + flow320.180(-2)

Or this set of lines:

 pattern(fish_minimum)

// + flow320.180(-1)

 + flow320.180(-2)

exactly the same as this line:

pattern(fish_minimum) + flow320.180(-2)

-199-

E. Simulation commands

Simulation commands are the heart of OCL. They are instructions that are directly incorporated into the simulation, and they
include OCL expressions that are evaluated during simulation. Section 4.7.2 documents each of the simulation commands,
and section 4.7.3 documents the syntax of OCL expressions. Two of the simulation commands appear in the udef section of
the OCL file. They are:

 Udef, (section 4.7.2 part B) for declaring a user-defined variable (a udef).

 Segment, (section 4.7.2 part C) declares several decision variables udefs which automatically act as segments of
another decision variable.

The other simulation commands appear in the command section of the OCL file. They are:

 Set, (section 4.7.2 part F) which assigns a value to a non-decision variable.

 Constraint, (section 4.7.2 part D) which enters a user-defined constraint into the LP.

 Target, (section 4.7.2 part E) which enters a user-defined goal into the LP. The generalized goal is to make a target
expression equal to a target value.

 Minimax, (section 4.7.2 part H) which enters a user-defined goal into the LP. The generalized goal is to make two
or more quantities equal to each other as closely as possible.

 Run_module (section 4.7.2 part G) tells OASIS to pass control to an external program and exchange data with the
program. This allows OASIS to run in parallel with other models.

 Solve, (section 4.7.2 part I) which tells OASIS to solve the LP routing problem.

 Cancel, (section 4.7.2 part J) which tells OASIS to discard the LP results of a solve command.

During simulation, the commands of the command section are evaluated in the order that they are entered into the OCL file.
Just before the LP routing problem is solved, the commands in the udef section are evaluated in the order they are entered into
the OCL file. Thus, in general, the commands of the command section are evaluated before the commands in the udef
section.

F. Meta commands

Meta commands are used for instructions that are not entered directly into the simulation. They do not contain expressions
that are evaluated during simulation. Rather, they fill roles that the simulation commands cannot, including:

 demarcating sections of the file.
 declaring resources (databases and external modules) that will be used by OCL simulation commands.
 issuing directives to OASIS as it reads the OCL text.

See section 4.7.1 for the syntax and usage of each meta-command.

See section 4.7.0 part G for a description of the major sections of the OCL file. Meta commands for demarcating sections of
the file:

 :UDEF:
 :COMMANDS:
 :END:
 :ITERATE:

Meta commands for declaring resources:

 :STATDB:
 :TIMEDB:
 :MODULE:

Meta commands for issuing directives to OASIS about how to read OCL:

 :INCLUDE:
 :SUBSTITUTE:
 :FOR: :NEXT:
 :IF: :ELSEIF: :ELSE: :ENDIF:

-200-

G. Sections of the OCL file

The OCL file has three major sections. Each section contains different kinds of input. The sections are:

 External resources section. The first section precedes the :UDEF: and :COMMANDS: keywords. It is used to
declare external modules and supplemental databases, using the :MODULE:, :STATDB:, and :TIMEDB: meta-
keywords. If there are no external resources to declare, then this section can be left empty.

 Udef section. The second section comes after the :UDEF: keyword. It is used to declare user-defined variables
with the udef and segment commands (section 4.7.0 part E). If there are no user-defined variables to declare, then
this section can be left empty. You may also omit it entirely by omitting the :UDEF: keyword.

 Command section. The third section follows the :COMMANDS: keyword. It contains simulation commands that
will be evaluated during simulation. Section 4.7.0 part E contains a list of the simulation commands that can be used
in this section. This section ends when the :END: keyword is found. You may leave this section empty, but the
:COMMANDS: and :END: keywords are always required.

See section 4.7.1 for documentation of the meta-keywords that demarcate these sections.

4.7.1 SYNTAX OF OCL META COMMANDS

A. :UDEF:

Syntax form (see section 4.7.0 part A for conventions):
:UDEF:

Demarcates the beginning of the udef section of the OCL file, and the end of the section that preceded. It cannot appear
before :COMMANDS:. It may be omitted if there are no udefs being declared. The udef section ends when :COMMANDS:
is encountered. See section 4.7.0 part G for a discussion of the sections of the OCL file.

B. :COMMANDS:

Syntax form (see section 4.7.0 part A for conventions):
:COMMANDS:

Demarcates the beginning of the command section of the OCL file, and the end of the section that preceded. Must appear
exactly once in every OCL input file. See section 4.7.0 part G for a discussion of the sections of the OCL file.

C. :END:

Syntax form (see section 4.7.0 part A for conventions):
:END:

Demarcates the end of the command section of the OCL file, and therefore the end of the file. Any text that follows the word
:END: is ignored. Must appear exactly once in every OCL input file. See section 4.7.0 part G for a discussion of the sections
of the OCL file.

D. :ITERATE:

Syntax form (see section 4.7.0 part A for conventions):
:ITERATE:

Marks the point where OASIS will begin re-evaluating simulation commands when it iterates from a solve command. Pairs of
:ITERATE: markers and solve commands can be nested inside each other. See section 4.7.2 part I for information about the
solve command. This keyword can only appear in the commands section of the OCL file (section 4.7.0 part G).

-201-

E. :STATDB:

Syntax form (see section 4.7.0 part A for conventions):
:STATDB: [file name of database]

or
:STATIC: [file name of database]

Used to declare a Microsoft Access database (section 4.5.8) containing time-pattern variables or lookup tables to be used by
OCL. If [file name of database] is given with relative path, then Onevar locates the file relative to the run directory. This
command can appear only once in the OCL file. It can only appear in the section of the OCL file for declaring external
resources (section 4.7.0 part G). Although :STATDB: is preferred, it is possible to write :STATIC: for backward
compatibility.

F. :TIMEDB:

Syntax form (see section 4.7.0 part A for conventions):
:TIMEDB: [file name of database]

or
:TIME: [file name of database]

Used to declare an HEC-DSS database file (section 4.6.5) containing time-series variables to be used by OCL. If [file name
of database] is given with relative path, then Onevar locates the file relative to the run directory. This keyword can only
appear in the section of the OCL file for declaring external resources (section 4.7.0 part G). Although :TIMEDB: is preferred,
it is possible to write :TIME: for backward compatibility.

You may use this meta-command up to ten times in order to use data from ten different database files. Note that OASIS
searches for time-series records in each of these databases in the order you list them with the :TIMEDB: meta-commands.
Once it finds the records, it stops searching.

G. :MODULE:

Syntax form (see section 4.7.0 part A for conventions):
:MODULE: [type] [module name] = [file name of module]

InitParam [Initialization Text]

Tells OASIS to initialize an external module contained in [file name of module] . See section 4.7.7 for more information
about external modules. This module is identified in the run_module commands with the given [module name] . [Module
name] is a unique string of your choice. The file name can be absolute or relative to the OASIS executable. OASIS does not
initialize the module if there is no run_module command in the commands section which applies the module (see section 4.7.2
part G for more about the run_module command).

The parameter [type] tells OASIS what protocol type (section 4.7.7 part B) to use for communicating with the module. If
[type] is DLL, then the module is initialized as a dynamic link library (DLL). No other [type] is currently available.

The parameter InitParam is optional. [Initialization Text] can only appear after InitParam . [Initialization Text] is a string of
text that is passed to the external module when it is initialized. The text is processed only by the module, and the meaning of
the text is specific to the module. If [Initialization Text] contains whitespace, then it should be enclosed in quotes.

This keyword can only appear in the section of the OCL file for declaring external resources (section 4.7.0 part G).

H. :INCLUDE:

Syntax form (see section 4.7.0 part A for conventions):
:INCLUDE: [file name]

When this keyword is encountered, OASIS behaves as if the complete text of the file given by [file name] was inserted at that
point. [File name] must be given relative to the run directory. The included file must contain nothing but legal OCL input.
Included files may include other files.

This command may appear in any section of the OCL file. It can not appear in the middle of another command. Furthermore,
no file may end in the middle of a command, even if you try to continue the command in another file.

-202-

I. :SUBSTITUTE:

Syntax form (see section 4.7.0 part A for conventions):
:SUBSTITUTE: [[name]] = [replacement text]

Defines a substitute that is used in subsequent OCL input. The substitute name, [name] , must be a continuous string (no
whitespace) enclosed in square brackets. There must be an equal sign, followed by the [replacement text] . You may place
quotes (section 4.7.0 part B) around [replacement text] in order to define a text that has whitespace. The quotes are not
considered a part of [replacement text] . [Replacement text] cannot be more than 1000 characters in length.

This command may appear in any section of the OCL file. It can not appear in the middle of another command. Any
substitute name can be re-defined with another instance of the :substitute: keyword.

Once the substitute has been defined, if OASIS encounters the [name] , in brackets, it replaces [name] and brackets with
[replacement text] before it interprets the input. For example, if this substitute has been defined:

 :SUBSTITUTE: [Shasta] = “004”

and OASIS subsequently finds an occurrence of

storage[shasta](-1)

it internally converts the word to

storage004(-1)

before interpreting. Note that the internal conversion is reflected in error messages and other output.

Any substitute name can be reassigned to a new substitute text in a second instance of the :SUBSTITUTE: command.

Within OCL there are pre-defined substitutes that you can use without having given the :SUBSTITUTE: command.
Although you can change these substitutes by using the :SUBSTITUTE: command, it is not recommended. The following
substitutes are recognized by the OASIS model and the post-processors:

 [Unit_Vol] The name of the primary volume units, as given in the Units table (section 4.5.3 part A).

 [Unit_Flow] The name of the primary flow-rate units, as given in the Units table (section 4.5.3 part A).

 [Unit_Elev] The name of the primary elevation units, as given in the Units table (section 4.5.3 part A).

 [RunDir] The full absolute path of the run directory (section 2.3.1).

 [HomeDir] The full absolute path of the home directory (section 3.3.2).

 [SameDir] The full absolute path of the folder containing the file that the substitute appears in. This is
intended for use in :INCLUDE: statements (section 4.7.1 part H), so that an OCL file can easily
include a file that is in the same folder.

The following pre-defined substitutes are only recognized by the post-processors.

 [RunPart] The run directory, expressed as only the last folder name in the path (section 2.3.1).

 [RunTime] The time at which the model run was executed, which the model automatically recorded in the
Runtime table (section 4.5.2 part G).

 [RunDesc] The one-line run description which can be entered in the control file (section 4.4.0).

 [InFile] The full absolute path of the Onevar input file (section 6.1.3). If you are running the plot program,
then this refers to the Onevar input file identified in the FileID table of the plot-definition file
(section 6.2.2).

 [OutFile] The full absolute path of the Onevar output file (section 6.1.4).

 [OutTime] The time at which the post-processor was executed.

 [PlotFile] The full absolute path of the plot-definition file (section 6.2.3).

 [Version] The version number of the OASIS executable, expressed in three parts delimited with dot
characters (e.g. 3.3.06).

 [VersionDash] The version number of the OASIS EXECUTABLE, expressed in three parts delimited with dash
characters (e.g. 3-3-06).

-203-

J. :FOR: :NEXT:

Syntax form (see section 4.7.0 part A for conventions):
:FOR:
 { [[name1]] = { [n1v1] , [n1v2] , ... }
 [[name2]] = { [n2v1] , [n2v2] , ... }
 ... }

[OCL commands]
:NEXT:

The :FOR:-:NEXT: pair of meta-keywords allows the same block of text to be read multiple times, or iterations. Everything
between :FOR: and :NEXT: forms a loop. For every iteration of the loop, the block of substitute names that are associated
with :FOR: will be redefined with new replacement texts. These substitutions follow the same conventions as with the
:SUBSTITUTE: meta-command (section 4.7.1 part I).

:FOR: is followed by a pair of curly braces which enclose a list of substitutes whose scope is limited to this particular :FOR:
loop. Each substitute name ([name1] , [name2] , ...) is enclosed in square brackets, just as with the :SUBSTITUTE: command.
Each name is followed by an equal sign, then a pair of curly braces that enclose the list of replacement texts for that substitute
([n1v1] , [n1v2] , ...). Each replacement text is separated by a comma. You may put quotes (section 4.7.0 part B) around any
of the replacement texts in order to include whitespace, commas, or curly braces in the text. Otherwise, OASIS interprets
whitespace, commas, or curly braces to indicate the end of the replacement text.

The substitute names in a :FOR: loop may not match any names that have already been defined by the :substitute: command.

Each substitute must have the same number of replacement texts as the other substitutes. Each replacement text of that
substitute is associated with an iteration of the loop.

When OASIS encounters :NEXT:, it redefines the substitutes and reads the loop again, starting at the end of the :FOR:
statement. If there are no more iterations, the :NEXT: instead causes the substitutes to be purged from memory. Every :FOR:
must have a matching :NEXT: and vice-versa.

This command may appear in any section of the OCL file. It can not appear in the middle of another command. You can put
loops in included files, and you can put :INCLUDE: statements (section 4.7.1 part H) in loops. However OASIS will not
allow you to place a :FOR: in a different file than its matching :NEXT:

Example:

:FOR: { [arc] = { [reach1], [reach2], [reach3] }
 [flow] = { “32.4”, “56.8”, 29.4 }
 }
 Set : max_flow[arc] { value : [flow] }
:NEXT:

is equivalent input to:

Set : max_flow[reach1] { value : 32.4 }
Set : max_flow[reach2] { value : 56.8 }
Set : max_flow[reach3] { value : 29.4 }

-204-

K. :IF: :ELSEIF: :ELSE: :ENDIF:

Syntax form (see section 4.7.0 part A for conventions):
:IF: { [special expression] }

[OCL commands]
:ELSEIF: { [special expression] }

[OCL commands]
:ELSE:

[OCL commands]
:ENDIF:

This group of meta-commands defines :IF: blocks for conditional parsing. :IF: and :ENDIF: are always required in a block.
:ELSEIF: is optional, and may appear any number of times. :ELSE: is optional and may only appear once. Unlike the other
meta-commands, these may appear in the middle of another command.

If [special expression] is true, the [OCL commands] that immediately follow are read as input, and [OCL commands] that
follow subsequent :ELSEIF: and :ELSE: statements are ignored until :ENDIF: is encountered. If the [special expression] is
not true, then OASIS skips all [OCL commands] until the next :IF:, :ELSEIF:, :ELSE:, or :ENDIF:. The [OCL commands]
following an :ELSE: are only read as input if none of the preceding special expressions were true. As OASIS skips over text,
it still honors comment markers (section 4.7.0 part D), so be careful not to comment out the :ELSE: OR :ENDIF:.

The [special expression] must not be confused with the general OCL expressions used in the simulation commands (which
are described in section 4.7.3). It expresses a true-or-false statement about the existence of an item in the model input, or
about the identity of substitution text. Special expressions that test the existence of model items must fit the form:

[item name] = [category name]
or [item name] != [category name]

The equal sign creates a special expression that is true if the item does exist as a member of the category. The not-equal sign
creates a special expression that is true if the item does not exist as a member of the category. There are certain categories of
model components that can be checked for existence. Their category names are:

 NODE [Item name] is a three-digit node number. The expression is true if that node number is
found in the Node table (section 4.5.3 part B).

 JUNCTION [Item name] is a three-digit node number. The expression is true if that node number is
in the Node table (section 4.5.3 part B) as type Junction.

 RESERVOIR [Item name] is a three-digit node number. The expression is true if that node number is
in the Node table (section 4.5.3 part B) as type Reservoir.

 DEMAND [Item name] is a three-digit node number. The expression is true if that node number is
in the Node table (section 4.5.3 part B) as type Demand.

 ARC [Item name] is the beginning node number of an arc, followed by a period and the ending
node number of an arc. The expression is true if that arc number is found in the Arc table
(section 4.5.3 part C).

 SUBSTITUTE [Item name] is a substitute name, including the square brackets. The expression is true if
the substitute name has been declared with the :SUBSTITUTE: meta-command (section
4.7.1 part I).

 UDEF [Item name] is a udef name. The expression is true if the udef name has been declared
with the UDEF command (section 4.7.2 part B).

 WQ [Item name] is the name of a water quality constituent. The expression is true if the
constituent name is found in the Concentration table (section 4.5.3 part D).

You may enter an expression that only consists of a single word. If you do this, OASIS checks whether the word is a
substitute name, in which case the expression is true. You may also compare text strings with substitutes. The syntax of such
an expression is

[word 1] = [word 2]
or [word 1] != [word 2]

In this case, OASIS replaces all substitutes in each of the two words, then checks whether the resulting text strings are equal.

Examples:

:IF: { ARC = 230.120 }
 :IF: { 230 = RESERVOIR }
 Udef : Stor_Wdrawl_230
 :ELSEIF: { 230 = DEMAND }

Udef : Percent_deliv_230
 :ENDIF:

 :ENDIF:

-205-

If arc 230.120 does not exist, then no udef is defined by the above example. If it does, and node 230 is a reservoir, then the
udef Stor_Wdrawl_230 will be defined. If the arc exists, and node 230 is a demand node, then the udef Percent_deliv_230
will be defined. If node 230 is neither reservoir nor demand, then the example does not define any udef.

:SUBSTITUTE: [xyz] = “CHATANOOGA”

:IF: { [xyz] }
SET : demand333 { value : 2500 }

:ENDIF:

:IF: { [xyz] = KNOXVILLE }
SET : demand333 { value : 0 }

:ELSE:
SET : demand333 { value : demand333 * 2 }

:ENDIF:

:IF: { [xyz] = CHATANOOGA }
SET : demand398 { value : 220 }

:ElseIf: { [xyz] = CHATANOOGA }
SET : demand398 { value : 990 }

:ElseIf: { [xyz] }
SET : demand398 { value : 970 }

:Else:
SET : demand398 { value : 950 }

:ENDIF:

The result of the above example is to set the value of demand333 to 5000, and demand398 to 220.

-206-

4.7.2 SYNTAX OF OCL SIMULATION COMMANDS

A. Conditions

Several of the OCL simulation commands can be conditional. That is, the command may include several condition
expressions. OASIS evaluates the condition expressions as true or false, and certain parameters of the command depend
upon which of its condition expressions is true. See section 4.7.3 for details about OCL expressions. The parameter fields
which depend upon a condition expression form a condition block.

You do not need to formulate the conditions so that only one is true. OASIS simply evaluates the conditions in the order that
they appear, and the first one that evaluates to true is chosen. The parameters in the chosen condition block are the ones that
are applied for the time step. This process is repeated every time step of simulation.

You can write default for the condition expression. Default stands for a condition expression that is always true. You should
put a default condition last in the series of condition blocks. Note that OASIS will continue to read conditions that follow a
default condition, but those conditions would never be evaluated during simulation.

Most of the time, you write condition expressions that contain at least one relational operator (< = >), and possibly some
logical operators (AND OR). However, OASIS never requires that the condition expression contain a relational operator.
Any expression that evaluates to a nonzero value is “true”. Any expression that evaluates to zero is “false”.

The example below illustrates the condition blocks of a set command. There are three condition blocks in this example. Each
condition block consists of the condition expression (following the word condition) and the value expression (following the
word value) which will be assigned to the variable if the condition is true.

Set : QuantityX
{
 condition : month = 1
 value : 400
 condition : month = 2
 value : 800
 condition : default
 value : 1000
}

In this example, QuantityX will be set to 400 if the month equals 1 (January), to 800 if the month equals 2 (February), and
1000 otherwise.

You are not required to enter conditions for every command. If the command does not really need to be conditional, then you
could make a single condition block whose condition expression is default. You achieve the same effect by omitting the
condition field. For example:

Set : QuantityX
{ condition : default
 value : 999
}

is the same as:

Set : QuantityX
{ value : 999 }

The documentation of the specific simulation commands (in the rest of section 4.7.2) demonstrates both conditional and
unconditional forms for the syntax of each command.

So that conditions can be better organized, OCL recognizes branched conditions. To create branched conditions, a condition

-207-

expression must be followed by a pair of curly braces. Inside the braces is a complete set of conditions. Here is an example:

Set : QuantityX
{
 condition 1 : month = 1
 {

 condition 2 : inflow200 > 550
 value : 200

 condition 3 : default
 value : 400
 }
 condition 4 : month = 2 or month = 3
 {

 condition 5 : inflow200 > 1000
 value : 200

 condition 6 : default
 value : 400
 }
 condition 7 : default
 value : 1000
}

In this example, conditions 1 and 4 each have branches. OASIS deals with this by combining condition 1 into conditions 2
and 3, and condition 4 into conditions 5 and 6. Thus, internally, there will only be 5 conditions for this command. The exact
same effect could be achieve without branched conditions, as in this example:

Set : QuantityX
{
 condition 2 : month = 1 and inflow200 > 550
 value : 200
 condition 3 : month = 1
 value : 400
 condition 5 : month = 2 or month = 3 and inflow200 > 1000
 value : 200
 condition 6 : month = 2 or month = 3
 value : 400
 condition 7 : default
 value : 1000
}

Though both of the above examples are equivalent, you may find that branched conditions make your OCL more readable.

-208-

B. Udef Command

Syntax form (see section 4.7.0 part A for conventions):

 Decision variable form:
Udef : [udef name] NOSTORE STORE INIT{[val 1],[val 2],...,[val n]}

 DECISION NoMultiple
 { [lower-bound expression] , [upper-bound expression] , INTEGER }

 Non-decision variable form:
Udef : [udef name] NOSTORE STORE INIT{[val 1],[val 2],...,[val n]}

Tells OASIS to create a user-defined variable named [udef name] . Once the user-defined variable (or “udef” for short) has
been created, it can be included in subsequent OCL expressions through the OCL file. This command can only appear in the
udef section of the OCL file (section 4.7.0 part G). See section 2.5.1 part A for an introduction to this command.

 [Udef name] can be any text within certain rules. The name cannot include any whitespace. The name must not begin with a
number or include any parentheses. The name cannot be an exact match of an OCL keyword. OASIS will tell you if a name
has violated any rules.

If you are entering a decision variable udef into an expression, the letter D (or d) will be appended to the front of its name.
However, do not put this D onto the front of [udef name] in the udef command.

The presence of the word DECISION is a flag that [udef name] is a decision variable. If DECISION is present, then the
command must follow the first syntax form, which includes the bound expressions within the curly braces. If DECISION is
not present, then [udef name] is not a decision variable, and the command must follow the second syntax form, which does
not include any bound expressions.

NOSTORE is an optional flag that tells OASIS not to keep a record of the variable in the time-series output database
(section 5.6.0). This can save run time and disk space. However, it will prevent you from accessing values of [udef name]
when post-processing. STORE is an optional flag that tells OASIS to write a record for [udef name] in the time-series output
database, even if the flag in the control file (section 4.4.0) tells OASIS not to write time-series output. STORE has no
practical effect when the time-series flag in the control file is on, because all udefs that are not flagged with NOSTORE are
recorded in time-series output by default.

The keyword INIT and the curly braces containing initial values, [val 1]...[val n] , are optional. If used, [val 1]...[val n] will
be assigned to memory as previous period values. The number of items n in this series can be from one to the number of
periods in a year. Each value is separated from the others by commas. The values can only be numeric constants —
expressions are not allowed. The values appear in order, so that [val n] is applied to the period just before the start of
simulation.

The [lower-bound expression] and [upper-bound expression] are required for decision variable udefs. See section 4.7.3 for
details about writing OCL expressions. These bounds will be entered into the LP during simulation. You may enter
unbounded in place of either or both bound expressions. This will cause the variable to lack an upper bound, lower bound, or
both, accordingly.

The word integer is an optional flag, to tell OASIS that [udef name] is restricted to integer values. If used, it must be entered
after a comma following [upper-bound expression] . If not used, then [upper-bound expression] will be immediately
followed by the closing curly brace — no comma. Remember that integer variables slow the solution time of the LP router.

The optional flag NoMultiple is only useful if you are doing MPO (section 2.2.7). This flag tells OASIS not to create a copy
of the variable for each MPO step. Instead, there will be only one copy, associated with the first MPO step. Note that this
flag only applies to decision variable udefs.

-209-

Examples:

UDEF : X_3
UDEF : X_4 init{3,4}
UDEF : ABCD NOSTORE

Three non-decision variables, named X_3, X_4, and ABCD will be created. All except ABCD will be recorded in time-series
output. X_3 and ABCD will not have any initial values. For the period just before simulation begins, X_4 will have a value of
4. For the period before that, X_4 will have a value of 3.

UDEF : Z_6 DECISION init{5} { 0 , X_3 - 22.3 }
UDEF : DEFG Decision NoStore { 0 , 1 , integer }

Two decision variables will be created. The udef Z_6 will not be an integer variable. It will have a value of 5 in the period
just before simulation begins. Its lower bound is zero, and its upper bound is the value of X_3 - 22.3. The udef DEFG will
not be recorded in time-series output. It will be an integer variable with 0-1 bounds — that is, a binary variable.

UDEF : Bubba DECISION { 0 , unbounded }
UDEF : Charlie DECISION { unbounded , unbounded }

Two decision variables will be created. Bubba will have a lower bound of zero, but no upper bound. Charlie will not have
any upper or lower bounds. Both variables will be recorded in output, and neither will have initial values.

-210-

C. Segment Command

Syntax form (see section 4.7.0 part A for conventions):

Segment : [dvar name] NOBINARY
{ { [bound 0 expr] }

 [seg 1 name] { [bound 1 expr] }
 [seg 2 name] { [bound 2 expr] }
 [...]

 [seg n name] { [bound n expr] }
}

Tells the program to create n decision-variable udefs, named [seg 1 name] through [seg n name] , which form segments of a
decision variable [dvar name] . OASIS automatically ensures that the sum of [seg 1 name] through [seg n name] plus [bound
0 expr] is equal to [dvar name] . This command can only appear in the udef section of the OCL file (section 4.7.0 part G).
See section 2.5.1 part B for an introduction to this command.

[Dvar name] can be a built-in decision variable, or a previously declared decision variable udef. Do not include the letter d
(for decision) at the front of the name.

The optional flag NOBINARY suppresses binary variables that are automatically created for the segment command. By
default, OASIS creates binary decision variables for each of the segment boundaries 1 through n-1. It then writes constraints
so that each segment variable [seg x name] is nonzero until the variable [seg x-1 name] is equal to [bound x-1 expr] . The
binary variables and their constraints are invisible to you unless you look in the file LP.out. Because binary variables may
decrease solution times, you may wish to suppress them with the NOBINARY flag. You should only use NOBINARY if you
are certain that the segments will come in order without the binaries.

Be aware that [dvar name] is effectively bounded by this command. Choose [bound 0 expr] and [bound n expr] to cover all
possible values of [dvar name] .

The new udefs, [seg 1 name] through [seg n name] , are decision variables. However, you must not include the letter d (for
decision) at the front of the names. Note OASIS does not save any of the new udefs to the time-series database, so they can
not be referenced with the post-processor programs.

Each [seg x name] has a lower bound of zero, and an upper bound of [bound x expr] minus
[bound x-1 expr] . The value of [dvar name] will be [bound 0 expr] when [seg 1 name] equals zero. The value of [dvar
name] will be [bound n expr] when [seg n name] is at its upper bound. Each of the values of [bound x expr] is an OCL
expression. See section 4.7.3 for details about writing OCL expression.

Example:

Suppose we wish to model leakage in a streambed. In the stream reach represented by arcs 100.150 and 150.200, water leaks
into the ground according to the piecewise-linear function shown in figure 4.7.2 part C. Arc 150.800 represents the leakage.
The first segment of the function from 0 CFS to 100 CFS, has a slope of 0.15. The second segment of the function from 100
CFS to 200 CFS, has a slope of 0.10 . The third segment of the function from 200 CFS to infinity, has a slope of 0.05. It has
been determined that the flow into the reach will almost certainly never go above 4000 CFS.

-211-

Figure 4.7.2 part C

Groundwater recharge from a stream

The following OCL input would be used to model the recharge described:

:UDEF:

Segment : Flow100.150
{ { 0 } FA100.150 { convert_units{ 100 , CFS , AF } }
 FB100.150 { convert_units{ 200 , CFS , AF } }
 FC100.150 { convert_units{ 4000 , CFS , AF } }
}

:COMMANDS:

CONSTRAINT recharge150 :
{ dFlow150.800 = 0.15 * dFA100.150
 + 0.10 * dFB100.150
 + 0.05 * dFC100.150
}

:END:

The segment command declares three udefs, FA100.150, FB100.150, and FC100.150 as segments of flow100.150. The
bound expressions in the segment command are the values of flow100.150 where the slope of the recharge function changes.
The value of flow100.150 is effectively bounded between 0 and 4000 CFS. Since all the variables are measured in AF, our
bounds must be converted from CFS to AF. The NOBINARY option has not been used in the segment command, though it
could be added if it is determined that the router will not try to enter the segments out of order.

The constraint command shows how easy it is to use the variables created with the segment command. This command simply
enforces the rule that the recharge, represented by flow150.800, is a linear function of flow100.150. Since it is a piecewise
function, the recharge is actually a function of the three segments of flow100.150.

-212-

D. Constraint Command

Syntax form (see section 4.7.0 part A for conventions):

 Unconditional form:
Constraint NoMultiple [constraint name] :
{ [constraint expression] }

 Conditional form:
Constraint NoMultiple [constraint name] :
{ Condition : [condition expression]
 Expression : [constraint expression] }

Gives OASIS a user-defined constraint to enter into the LP routing problem. See section 2.5.1 part D for an introduction to
this command. See section 4.7.3 for details about writing OCL expressions.

The constraint may be conditional or unconditional. If unconditional, the constraint applies in every simulation time step.
The input for unconditional constraints does not employ the keywords condition and expression. If conditional, the constraint
is only entered into the LP routing problem if the condition expression evaluates to true for the time step. The conditional
syntax form requires the keywords condition and expression to separate the [condition expression] from the [constraint
expression] .

It is recommended that you give the constraint a name, although you can omit it. [Constraint name] cannot include any
whitespace. Command names are not required to be unique. The purpose of [constraint name] is to serve as a convenient
identifier in output messages.

The optional flag NoMultiple is only useful if you are doing MPO (section 2.2.7). This flag tells OASIS not to create a copy
of the constraint for each MPO step. Instead, there will be only one copy, associated with the first MPO step.

[Condition expression] must follow the guidelines described in section 4.7.2 part A.

[Constraint expression] must be a linear expression of one or more decision variables. It must include exactly one
comparison operator (=, <, <=, >=, or >) between the decision variable terms of the expression. Comparison operators within
a coefficient are legal. You do not have to distribute the terms of the linear expression. OASIS will reject any non-linear
expressions and issue an error message. Remember, decision variables are distinguished from non-decision variables because
decision variables always start with an extra letter d.

Examples:

Constraint Non-decreasing_flow :
{ Condition : month >= 3 and month <= 8
 Expression : dFlow210.288 > flow210.288(-1) - 30 }

From March through August, constraint command Non-decreasing_flow will prevent the flow in the arc from being less than
the previous period’s flow, minus a tolerance of 30. This command has no effect in other months.

Constraint export_limit :
{ dExport < 0.65 * (dflow300.310 + dflow350.310 + inflow320)
}

Constraint export_limit is always written into the LP, since it is unconditional. Notice that the right-hand side of the
constraint expression does not need to be distributed. It could just as easily have been written in a distributed form, with the
same effect.

-213-

E. Target Command

Syntax form (see section 4.7.0 part A for conventions):

 Unconditional form:
Target NoMultiple [target name] : [target expression]
{

Priority : [integer priority level]
Penalty+ WARN : [penalty+ value]
Penalty- WARN : [penalty- value]
Value : [target value expression]

}

 Conditional form:
Target NoMultiple [target name] : [target expression]
{

Condition [condition name] : [condition expression]
Priority : [integer priority level]
Penalty+ WARN : [penalty+ value]
Penalty- WARN : [penalty- value]
Value : [target value expression]

[...]

Condition [condition name] : [condition expression]
Priority : [integer priority level]
Penalty+ WARN : [penalty value]
Penalty- WARN : [penalty value]
Value : [target value expression]

}

Gives OASIS a user-defined goal to enter into the LP routing problem. See section 2.5.1 part E for an introduction to this
command. See section 4.7.3 for details about writing OCL expressions.

The target works by penalizing the router for letting [target expression] deviate from [target value expression] . Since the
penalties can be positive or negative, there are different types of goals that can be created with the target command. Positive
penalties will create a goal of making [target expression] equal to [target value expression] . However, negative penalties
will create a goal of making [target expression] deviate from [target value expression] as much as possible. Penalty values
of zero will leave the LP router indifferent to the deviation.

The [target name] is optional. The name cannot include any whitespace. The name is not required to be unique. It is for
your convenience in OASIS output. Also, it can be used in the target_val variable (section 4.7.4).

The optional flag NoMultiple is only useful if you are doing MPO (section 2.2.7). This flag tells OASIS not to create a copy
of the target for each MPO step. Instead, there will be only one copy, associated with the first MPO step.

The [target expression] must be a linear expression of one or more decision variables. It must not include any comparison
operators (=, <, <=, >=, >) between the decision variable terms. Comparison operators within a coefficient are legal. You do
not have to distribute the terms of the linear expression. OASIS rejects any non-linear expressions and issues an error
message. Remember, decision variables are distinguished from non-decision variables because decision variables always start
with an extra letter d.

The command can be entered in either conditional or unconditional form. There is little difference between the two.
Internally, OASIS treats all targets as though they were conditional. It stores the unconditional target in memory by giving it
the implicit condition default. The conditional form may have one or many conditions.

For the conditional form, each condition can be given an optional [condition name] . The name cannot include any
whitespace. The name is not required to be unique. It is for your convenience in OASIS output. The [condition expression]
must follow the guidelines described in section 4.7.2 part A. Each condition field is the head of a condition block. Each
condition block must have complete priority, penalty+, penalty-, and value fields. Thus, the priority level, the penalties, and
the target value may vary with each condition.

The priority field is the first item in each condition block. A different priority can be used for each condition. The [integer
priority level] is the priority level at which the target will be applied in the LP routing problem. Enter it as a constant. See
section 2.2.6 for more on priority levels.

The penalty+ and penalty- fields are the second and third item in each condition block. Different penalty values can be used
for each condition. [Penalty+ value] and [penalty- value] must be entered as constants. Either one can be positive, negative,
or zero. When the [target expression] is greater than [target value expression] , the LP router loses [penalty+ value] points
for every unit of deviation. When the [target expression] is less than [target value expression] , the LP router loses [penalty-
value] points for every unit of deviation. See section 2.2.3 for an introduction to LP-router goals.

-214-

You may enter the keyword bound in place of [penalty+ value] , in order to constrain the [target expression] from being
greater than the [target value expression] . You may also enter bound in place of [penalty- value] to constrain the [target
expression] from being less than the [target value expression] . If you place bound in both penalty fields, or bound in one
penalty field and zero in the other, then the target command is being used to define a constraint, not a goal. In this case,
[integer priority level] is irrelevant. Some constraints you may wish to define with the target command, instead of the
constraint command, because with the target command you can have many conditions with different target values.

The keyword WARN is optional, and you should only use it for special cases. It can be placed after either-or-both of the
words penalty+ and penalty-. Use of the WARN flag with penalty+ tells OASIS to issue a warning message when the [target
expression] is more than the [target value expression] . Use of the WARN flag with penalty- tells OASIS to issue a warning
message when the [target expression] is less than the [target value expression] . These warnings are issued only if WARN is
used for the chosen condition when the deviation occurred. The warning consists of a message in the file debug.out (section
5.1.0), telling which target had the deviation. Also, a note appears in the OASIS window telling you that there are warnings
in debug.out.

The value field is the fourth and last field in each condition block. Different value expressions can be used for each
condition. [Target value expression] can not include any decision variables.

-215-

Examples:

Consider a well field where we can pump water from the ground or inject it into the ground. The reversible arc 600.350
represents the well field. Flow in the positive direction is pumping; flow in the negative direction is injection. During the wet
California winter, our policy is to inject, not pump. During the summer, we should pump but not inject. It will be a goal to
follow this policy — if there is a huge surplus of water in summer, we would still like to inject it, and we would pump in
winter if there was no other source.

TARGET pump/inject_penalties : dFlow600.350
{
 condition summer : month >= 5 and month <= 10
 priority : 1
 penalty+ : 15
 penalty- : 400
 value : 0

 condition winter : default
 priority : 1
 penalty+ : 30
 penalty- : 0
 value : 0
}

The target pump/inject_penalties has two conditions, one for summer (May-October) and one for winter (all other times).
The target expression is the flow in our well-field arc, 600.350. Both conditions have a target value of zero. Flow greater
than zero is pumping, so the [penalty+ value] is the penalty to the router per unit of pumping. Flow less than zero is
injection, so the [penalty- value] is the penalty to the router per unit of injection. There are other weight and penalty values
bearing on this decision, so we will not worry about the exact values of the penalties. However, notice that there is a higher
penalty for pumping in the winter than in summer, and the penalty for injection is higher in summer than in winter.

TARGET total_stor_target : dStorage400 + dStorage401
{
 priority : 1
 penalty+ : 0
 penalty- : 130
 Value : 200 + pattern(addnl_storage)
}

Target total_stor_target is unconditional. It expresses a goal of keeping at least 200 units, plus a seasonal pattern, in storage
between two reservoirs, represented by nodes 400 and 401. The router loses 130 points for every unit that the combined
storage falls short of the target value. Note that with this command alone, the LP router would have alternate optima when
considering the difference in storage between reservoir nodes 400 and 401. Other commands that are not shown may thwart
the alternate optima.

TARGET stor_046 : dstorage046
{
 condition : default
 priority : 2
 penalty+ : -18
 penalty- : bound
 value : 0
}

The target stor_046 is entered in a conditional form, but since this single condition is always true, we could just as easily use
the unconditional form. This target is to encourage storage in reservoir node 46. The router gains 18 points for every unit of
storage in node 46 over zero. It is a gain because the penalty has negative value. The [penalty- value] has been replaced by
the keyword bound. This is because dStorage046 is already bound from being less than zero. Therefore, it is a cleaner
formulation to avoid assigning penalties to this range of impossibility (in fact, a [penalty- value] of zero could result in an
unbounded variable in the LP).

-216-

F. Set Command

Syntax form (see section 4.7.0 part A for conventions):

 Unconditional form:
Set [command name] : [variable name]
{ Value : [value expression] }

 Conditional form:
Set [command name] : [variable name]
{
 Condition [condition name] : [condition expression]
 Value : [value expression]

 [...]

 Condition [condition name] : [condition expression]
 Value : [value expression]
}

Assigns the value given by [value expression] to a non-decision variable, [variable name] . See section 2.5.1 part C for an
introduction to this command. See section 4.7.3 for details about writing OCL expressions.

[Variable name] can be any of the variable types from the following table. See section 4.7.4 for definitions of each variable
type.

Variable name Conditions for Use with Set Command

 min_flow Enter OCL into the Min Flow field in the Arc table (section 4.5.3 part C)

 max_flow Enter OCL into the Max Flow field in the Arc table (section 4.5.3 part C)

 MaxRev_flow Enter OCL into the MaxRev Flow field in the Arc table (section 4.5.3 part C)

 inflow Enter OCL into the Inflow field in the Node table (section 4.5.3 part B)

 demand Enter OCL into the Demand Type field in the Demand table (section 4.5.4 part A)

 upper_rule Enter OCL into the Upper Rule field in the Reservoir table (section 4.5.3 part H)

 lower_rule Enter OCL into the Lower Rule field in the Reservoir table (section 4.5.3 part H)

 evap Enter OCL into the Evaporation Type field in the Evaporation table (section 4.5.3 part K)

 evap_rate Enter OCL into the Evaporation Type field in the Evaporation table (section 4.5.3 part K)

 conc_input
 at an arc

Enter OCL into the Cx_input field in the Arc table (section 4.5.3 part C)

 conc_input
 at a node

Enter OCL into the Cx_input field in the Node table (section 4.5.3 part B)

 [udef name] Must defined as a non-decision-variable by a udef command (section 4.7.2 part B)

The set command always assigns the present period value of [variable name] . If you attach a time-lag indicator (section 4.7.4
part A) to [variable name] , it will be ignored.

It is legal to have more than one set command setting the same variable. If a set command is required for any variable, but is
not found, then OASIS prints a warning message into the debug.out file (section 5.1.0). Generally, this is not a fatal error,
because OASIS applies a default value to any variable that lacks a set command. However, it is possible to configure OASIS
so that a missing set command triggers a fatal error. To do this, set the parameter FatalMissingVarSet=1 in the GUI.ini file
(section 3.3.5).

The [command name] is optional. The name cannot include any whitespace. The name is not required to be unique. It is for
your convenience in OASIS output. With the set command, it is often most convenient to omit [command name] , because
OASIS will assign a default name of [variable name] for the command name. However, it is still recommended that you use
[command name] when there is more than one set command for [variable name] .

-217-

The command can be entered in either conditional or unconditional form. There is little difference between the two.
Internally, OASIS treats all set commands as though they were conditional. It stores the unconditional set command in
memory by giving it the implicit condition default. The conditional form may have one or many conditions.

For the conditional form, each condition can be given an optional [condition name] . The name cannot include any
whitespace. The name is not required to be unique. It is for your convenience in OASIS output. The [condition expression]
must follow the guidelines described in section 4.7.2 part A. Each condition field is the head of a condition block. Each
condition block must have a value field. Thus, the value would vary with each condition.

Examples:

set : accum_flow100.200
{
 Condition : month = 10
 Value : flow100.200

 Condition : default
 Value : accum_flow100.200(-1) + flow100.200
}

This command sets the value of a non-decision variable udef, accum_flow100.200. The command follows the conditional
form. The first condition is for October only. In October, accum_flow100.200 is set equal to flow100.200. The second
condition applies to all other months. It accumulates the value of the udef by setting its value equal to the previous month’s
value of accum_flow100.200 plus the current value of flow100.200.

set accum100.200_step1 : accum_flow100.200
{
 Condition : month = 10
 Value : 0

 Condition : default
 Value : accum_flow100.200(-1)
}
set accum100.200_step2 : accum_flow100.200
{
 Value : accum_flow100.200(-1) + flow100.200
}

These two commands have the same effect as the single command in the first example. Our purpose here is to show that we
can set the value of a specific variable more than once. In the previous example, we omitted the command name. Here, we
use command names to distinguish the two commands. Also note that the second command in this example is unconditional.

-218-

G. Run_module Command

Syntax form (see section 4.7.0 part A for conventions):

Run_module : [module name]
{
 Thread : [thread type]
 Input : { [expression 1] , [expression 2] , [...] }
 Output : { [variable 1] , [variable 2] , [...] }
}

Tells OASIS to process an external procedure, known as an external module. The command includes parameter values to
exchange with the module. See section 2.5.1 part I for an introduction to this command. See section 4.7.7 for more details
about using external modules.

[Module name] must have been declared at the beginning of the OCL file with the :MODULE: meta-command (section 4.7.1
part G). It is possible for more than one run_module command to call [module name] .

If the command line parameter PARENT (section 4.1.0) was used, then it is possible to use the word PARENT for the [module
name] . This allows OASIS to exchange data with the program that spawned it. Do not use the :MODULE: command to
declare the module PARENT.

The field thread can be omitted, in which case the [thread type] is NONE . [Thread type] determines whether the module is
processed in a new execution thread or not. If the module is to be processed in a new thread, then [thread type] indicates
whether the run_module command is for the start or end of the new thread. [Thread type] can have the following values:

 None This is the default case. The run_module command processes the external module in OASIS’s original
execution thread. The run_module command must contain both an Input field and an Output field

 Start The run_module command causes a new thread to be started for the external module. After evaluating this
run_module command, OASIS may be multitasking – allowing the external module to process at the same
time as OASIS evaluates further OCL commands. The run_module command must contain an Input field
but no Output field, because at this point OASIS sends data to the external module, but OASIS does not
receive data until the module’s thread is finished.

You may delay threading for the run_module command by attaching a time step number n to Start in
parentheses. If you do this, then during the initial time steps OASIS processes the module in OASIS’s
original execution thread, just as if the thread field contained None. The first step on which threading is
performed is step number n. For example, if the thread field contains Start(3), then threading is not
performed on steps 1 and 2, but on steps 3 and thereafter the run_module command is threaded. If no
number is attached to Start in parentheses, then n implicitly equals 1.

 End The run_module command causes OASIS to receive the results of an external module that was previously
started in a new thread. OASIS does not proceed with the evaluation of further OCL commands until the
thread is finished. The run_module command must contain an Output field but no Input field..

If thread: start is used, then it must be followed by another run_module command for [module name] with thread: end.
Other OCL commands may occur between this pair of run_module commands. However, another run_module command for
the same [module name] can not occur between this pair of run_module commands if it contains thread: start or thread:
none. If thread: end is used, then it must be preceded by a matching run_module command with thread: start.

The input field contains a list of [expression 1] , [expression 2] , etc. The list is enclosed in curly braces, and each expression
is separated from the others by commas. Each expression is evaluated, and the value is passed to the module. See section
4.7.3 for details about writing OCL expressions.

The output field contains a list of [variable 1] , [variable 2] , etc. The list is enclosed in curly braces, and each variable is
separated from the others by commas. These are not expressions, but the names of individual variables. Each variable in the
list must be one that can be legally set by OCL using the set command (see section 4.7.2 part F for a list of legal variable
names). When the external module passes control back to OASIS, the values that the module passes back are assigned to
[variable 1] , [variable 2] , etc., just as if they had been set with the set command.

OASIS does not check whether the number of items in the Input field and Output field are correct for the module. The
module might or might do such an error check – it depends on how the module is coded. The input and output list may each
contain up to 50 items.

-219-

Example:

:MODULE: DLL compute_RMDO = modules\delt_out.exe

:COMMANDS:

RUN_MODULE : compute_RMDO
{
 input : { abs_period , period , year ,
 storage046 , flow509.999(-1) }
 output : { min_flow509.999 , x2_position }
}
:END:

This example shows how the module name must be declared with the :MODULE: command. Then, in the command section,
the run_module command can be used to call the module. In the example, five parameters are passed to the module. The
module passes back two parameters, the value of a built-in variable (min_flow509.999) and the value of a udef (x2_position).
The thread field is omitted, so this run_module command does not execute in a new thread.

The following example shows how a run_module command can execute in a new thread:

RUN_MODULE : compute_RMDO
{ thread : START
 input : { flow509.999(-1) }
}

SOLVE : { priority : 1 }

RUN_MODULE : compute_RMDO
{ thread : END
 output : { x2_position }
}
:END:

In this example, the module is executed in a separate thread from the rest of OASIS. While the module is running, OASIS
executes the solve command. This might save significant run time when running on a multiprocessor or multicore computer.
However, note that the value of variable x2_position is not assigned until the second run_module command.

-220-

H. Minimax Command

Syntax form (see section 4.7.0 part A for conventions):

Minimax : [minimax variable]
{

Priority : [integer priority level]
Penalty : [penalty value]
tolerance : [tolerance value]

}

Enters a user-defined goal into the LP which seeks to make two or more quantities equal to each other as closely as possible.
See section 2.5.1 part F for an introduction to this command. This is a powerful, but complicated procedure, and it cannot be
achieved with the minimax command alone. Effective use of the minimax command requires coordinated use of constraint
commands, as will be explained.

The [minimax variable] is a decision variable udef that must be declared with the udef command (section 4.7.2 part B). The
first step that OASIS does for the minimax command is to minimize [minimax variable] . It does this by entering [minimax
variable] into the LP objective function at the priority level given by [integer priority level] , with a penalty of [penalty
value] .

An effective minimax command must be applied in conjunction with two or more constraint commands that constrain the
value of [minimax variable] . See section 4.7.2 part D for more on the constraint command. The constraint expressions of
the constraint command must follow this form:

[minimax variable] > [quantity X to be equalized]

and repeated with similar constraint commands for every [quantity X to be equalized] . OASIS automatically detects any
constraint that contains [minimax variable] and groups it with the minimax command.

As we said, the minimax command minimizes the [minimax variable] . It can be shown that the smallest value of [minimax
variable] occurs when all [quantity X to be equalized] are equal. However, when other constraints force the value of one
[quantity X to be equalized] to be greater than the others, the LP router is indifferent to the values of the others. Thus,
OASIS automatically checks for such binding constraints. If it finds any, it temporarily removes the [minimax variable]
from the binding constraint, and re-solves the LP routing problem. It then checks for more binding constraints, and continues
the process until there are no more binding constraints.

If the greatest difference between the values of [quantity X to be equalized] is less than [tolerance value] , then OASIS will
not do any more minimax iterations. Notice that if there are only two [quantity X to be equalized] , then there will be no
additional minimax iterations, so [tolerance value] is irrelevant. [Tolerance value] is measured in the same units as [minimax
variable] .

-221-

Example:

In the example, the quantities that we want to equalize are the percentages of shortages at several demand nodes. In other
words, if there are shortages, we want each of these nodes to take an equal percent cut.

:UDEF:
udef : MM DECISION NOSTORE { 0 , unbounded }

:COMMANDS:

CONSTRAINT minimax_dem111 :
{ CONDITION : demand111 > 0
 Expression : dMM > 1 - dDelivery111 / demand111
}
CONSTRAINT minimax_dem115 :
{ CONDITION : demand115 > 0
 Expression : dMM > 1 - dDelivery115 / demand115
}
CONSTRAINT minimax_dem124 :
{ CONDITION : demand124 > 0
 Expression : dMM > 1 - dDelivery124 / demand124
}
CONSTRAINT minimax_dem150 :
{ CONDITION : demand150 > 0
 Expression : dMM > 1 - dDelivery150 / demand150
}

MINIMAX : dMM
{
 Priority : 2
 penalty : 80
 tolerance : .05
}

:END:

Our minimax variable is MM , declared with the udef command. The bounds on this variable are not critical, because various
parts of the minimax will effectively bind it between 0 and 1. The constraint commands are used to constrain the minimax
variable to be greater than the fractional shortage at four different demand nodes. The minimax command will penalizes the
value of MM 80 points for each unit. Since the value of MM will always be between 0 (no shortage) and 1 (complete
shortage), the router will lose between 0 and 80 points total. If, after solving the LP at priority 2, all four of the fractional
shortages are within 0.05 of each other (the tolerance value), then OASIS will not bother to remove the binding constraints
and do more iterations for this minimax. If the fractional shortages are not within the tolerance value, then OASIS may do up
to two additional solves (there are four constraints for this minimax variable, and OASIS will stop iterating when there are
only two constraints that have not been removed).

-222-

I. Solve Command

Syntax form (see section 4.7.0 part A for conventions):

 Unconditional form:
Solve [command options list] :
{
 [condition block]
}

 Conditional form:
Solve [command options list] :
{
 Condition [condition name] : [condition expression]
 [condition block]

 [...]

 Condition [condition name] : [condition expression]
 [condition block]
}

where each [condition block] has one of the following forms:
 Non-iterative form:

Priority : [integer priority level]
Options : [conditional options list]

 Stopping-criteria expression form:
Priority : [integer priority level]
Options : [conditional options list]
Criteria : [criteria expression]
Itermax : [maximum number of iterations]

 Stopping-on-convergence form:
Priority : [integer priority level]
Options : [conditional options list]
Converge : [convergence expression]
Tolerance : [tolerance expression]
Itermax : [maximum number of iterations]

Tells OASIS to solve one or more priority levels of the LP routing problem. It can optionally tell OASIS to check whether
user-specified criteria are met, and if not, to iterate the solve process. Thus, the solve command can be iterative or non-
iterative.

See section 2.5.1 part G for an introduction to this command. See section 4.7.3 for details about writing OCL expressions.

It is possible to run OASIS without entering any solve commands. If you do not enter any, then OASIS automatically creates
one as the last command, to solve all priority levels. If you do enter one, then it becomes your responsibility to issue enough
solve commands so that all priority levels are solved. In this case, OASIS issues an error message if there are priority levels
that lack solve commands.

If you are doing multiple-period optimization (MPO) (section 2.2.7), then OASIS evaluates all commands that precede the
solve command once for every MPO step before it actually solves the LP. MPO cannot be combined with multiple priority
levels in the same OASIS run. You should not combine iterative solve commands with MPO.

The solve command may be conditional or unconditional. If it is conditional, then each condition block may be individually
defined as iterative or non-iterative, regardless of the types of the other blocks. The fields that are found in each condition
block depend upon whether the block is iterative, and if so, how you wish to define the stopping criteria.

The solve command can be used with optional flags, entered either in [command options list] or [conditional options list] .
Options entered in [command options list] will be applied to all conditions, while options entered in [conditional options list]
will be applied only to the individual condition. Either of the options lists can be left blank. If there are not options for a
condition block, then the options field can be omitted from that block entirely. Available options are:

 Iterative. OASIS will check the stopping criteria and re-solve the LP if the criteria is not met. The default is a non-
iterative solve.

 NoWQ . OASIS will not solve for the water quality after solving the LP. The default is to solve for the water quality
after every LP solution. Using this parameter can save run time, especially if you expect large numbers of iterations.
Note that if the water quality has not been solved after all OCL commands are evaluated, OASIS will automatically
solve water quality on its own.

-223-

 Rewrite. Forces OASIS to rewrite the entire LP before solving. By default, OASIS only rewrites the entire LP
before the first solve of each time step. Using this parameter can increase run time, but it will be necessary if you
have changed the values of any built-in variables since the first solve of the time step.

For the conditional form, each condition can be given an optional [condition name] . The name cannot include any
whitespace. The name is not required to be unique. It is for your convenience in OASIS output. The [condition expression]
must follow the guidelines described in section 4.7.2 part A. Each condition field is the head of a condition block. Each
condition block must have a priority field, but the other fields of the condition block may vary as shown in the syntax form.

When executing the solve command, OASIS will solve all priority levels that have not already been solved, up to and
including [integer priority level] . It is legal to re-solve a priority level that has already been solved in the current time step.
If priority levels greater than [integer priority level] have already been solved, then they will need to be re-solved before the
time step is complete.

If the solve is iterative, it will evaluate the stopping criteria after it has solved [integer priority level] . The stopping criteria
can be defined two ways:

 Stopping criteria expression. This option is defined with the criteria field. The [criteria expression] will be
evaluated after all priority levels are solved for this solve command. If [criteria expression] evaluates to true (or
nonzero), then no more iterations will be done. If [criteria expression] evaluates to false (or zero), then OASIS will
do another iteration.

 Stopping on convergence. This option is defined with two fields: a converge field and a tolerance field. With this
method, there will always be at least two iterations. After the second iteration and all subsequent iterations, OASIS
takes the difference between the previous [convergence expression] and subtracts from the current [convergence
expression] . If the absolute value of the difference is less than [tolerance expression] , then no more iterations will
be done. Otherwise, OASIS will iterate again.

Both of the iterative syntax forms include an itermax field. You must enter an integer value for [maximum number of
iterations] . If the maximum number of iterations have been performed, then OASIS stops iterating, regardless of the stopping
criteria.

OASIS chooses the condition which is true before it solves the LP. If the solve command is iterative, OASIS will not re-
evaluate the condition expression of the solve command with each iteration. Rather, it will keep using the chosen condition
that was picked the first time.

If the solve command is iterative or is iterative under any conditions, then it must be matched with an :ITERATE: marker.
Each :ITERATE: marker can be matched with only one solve command, and vice-versa. The :ITERATE: markers are matched
with the solve commands in a nested fashion. That is, when OASIS reads an iterative solve command, it will be matched with
the nearest previous :ITERATE: marker that has not already been matched. When OASIS iterates a solve command, it re-
evaluates all OCL commands that follow the matching :ITERATE: marker.

Examples:

SOLVE :
{ condition : month = 5
 priority : 1
}
Constraint :
{ condition : month = 5 AND storage680 < 40

 Expression : dflow700.120 < convert_units{ 15 , cfs , VOLUME }
}
SOLVE : { priority : 2 }

This example shows how we can write a rule that depends upon the results of an initial solve. The storage at node 680 is a
decision variable, but assume that in this model its value does not change after the priority 1 solve. Therefore, we can
constrain the flow in arc700.120, depending upon the storage in 680, after priority 1 has been solved by the first solve
command. Notice that the conditions are such that the constraint command and the first solve command are only performed
in month 5 (May). Thus, in all other months, OASIS solves both priority 1 and 2 when it evaluates the second solve
command. Note that it is not necessary to use the rewrite option in the second solve command, because we have not changed
any of the built-in variables.

-224-

SET initial_inflow200 : inflow200
{ value : timesers(200/base_inflow) - 30 }

:ITERATE:

SET revise_inflow200 : inflow200 { value : inflow200 + 30 }

SOLVE ITERATIVE Rewrite :
{ condition : inflow250 > 5000
 priority : 1
 CRITERIA : flow201.202 > 1000
 itermax : 6

 condition : default
 priority : 1
 converge : flow201.202
 tolerance : .001
 itermax : 6
}

In this example, the first set command assigns a value to inflow200, and the second set command increments the value by 30
units. The solve command is iterative, so if the criteria are not met, then OASIS will re-evaluate all commands after the
:ITERATE: marker. Thus, the second set command will increment the value of inflow200 by 30 units every iteration. It is
important that we use the rewrite option in the solve command, because we are changing the value of a built-in variable
(inflow) after solving.

The two conditions of the solve command use different types of stopping criteria. The first condition uses a criteria
expression, while the second uses the stopping-on-convergence method. When the first condition is true, iterations will stop
when flow201.202 exceeds 1000 units. When the second condition is true, iterations will stop when the difference between
the values of flow201.202 this iteration and last iteration is less than 0.001. Under both conditions, no more than 6 iterations
will be performed.

-225-

J. Cancel Command

Syntax form (see section 4.7.0 part A for conventions):

 Unconditional form:
Cancel :
{ Priority : [integer priority level] }

 Conditional form:
Cancel :
{
 Condition [condition name] : [condition expression]

Priority : [integer priority level]

 [...]

 Condition [condition name] : [condition expression]
Priority : [integer priority level]

}

Tells OASIS to cancel a single priority level, [integer priority level] , that has been previously solved with the solve
command. See section 2.5.1 part H for an introduction to this command.

Normally, each priority level is constrained to the alternate optima of the priority levels that were solved before it (section
2.2.6). The effect of the cancel command is to remove the constraint so that the solution of future priority levels are not
constrained to the alternate optima of [integer priority level] . OASIS cancels [integer priority level] regardless of the
identity of the most recently solved priority level. If [integer priority level] has not yet been solved for the current time step,
then the cancel command has no practical effect.

The cancel command does not affect the solved values of decision variables that are in memory – they remain the same after
the cancel command as before the cancel command is evaluated. For example, if priority 1 is solved through use of the solve
command, suppose that flow100.200 is given the value 560.8 units. If the cancel command is then used to cancel priority 1,
the value of flow100.200 is still 560.8 units. The value of this variable does not change until another solve command is
evaluated.

The cancel command may be conditional or unconditional. There is little difference between the two. Internally, OASIS
treats all cancel commands as though they were conditional. It stores the unconditional cancel command in memory by
giving it the implicit condition default. The conditional form may have one or many conditions.

For the conditional form, each condition can be given an optional [condition name] . The name cannot include any
whitespace. The name is not required to be unique. It is for your convenience in OASIS output. The [condition expression]
must follow the guidelines described in section 4.7.2 part A. Each condition field is the head of a condition block. Each
condition block must have a priority field. Thus, the priority level would vary with each condition.

Example:

This example shows a greatly simplified version of a problem where the cancel command was actually used. It is so
simplified that you could easily compute the values you need without the cancel command. We’ll show an approach with the
cancel command, and one without, and explain why the cancel command may be desirable.

Suppose there are two reservoirs, represented by nodes number 1 and 3. They are on separate forks of a river. There are in-
stream flow requirements immediately below each reservoir. The inflow to each reservoir is uncontrolled, and there is no
evaporation. Far downstream, below the confluence of the two forks, at the mouth of the river, there is an in-stream flow
requirement. Usually, the flow requirement at the mouth is governing the operation. For some reason, it is important to know
how much water would have to come out of storage if the flow requirement at the mouth did not exist.

Here’s how you could compute the storage release without the cancel command. Not shown are weights on storage in each
reservoir, and weights on the minimum flow targets in priority 1.

set compute_Min_Stor_release : Min_Stor_release
{
 value : min_flow001.101 + min_flow003.103 - (inflow001 + inflow003)
}
TARGET Final_outflow : dFlow180.999
{ priority : 1
 penalty+ : 0
 penalty- : 100
 value : 50
}

SOLVE : { priority : 1 }

-226-

Here’s how we could do it with the cancel command. Not shown are weights on storage in each reservoir, and weights on the
minimum flow targets in priority 2.

TARGET Pri_1_stor : dStorage001 + dStorage003
{ priority : 2
 penalty+ : -20
 penalty- : bound
 value : 0
}
TARGET Pri_1_flow : dFlow001.101
{ priority : 2
 penalty+ : 0
 penalty- : 80
 value : min_flow001.101
}
TARGET Pri_1_flow : dFlow003.103
{ priority : 2
 penalty+ : 0
 penalty- : 80
 value : min_flow003.103
}

SOLVE : { priority : 1 }

CANCEL : { priority : 1 }

set compute_Min_Stor_release : Min_Stor_release
{
 value : (storage001(-1) + storage003(-1))
 - (storage001 + storage003)
}
TARGET Final_outflow : dFlow180.999
{ priority : 2
 penalty+ : 0
 penalty- : 100
 value : 50
}

SOLVE : { priority : 2 }

The first approach appears much simpler, so why would we ever want to use the cancel command? Suppose that instead of a
single in-stream flow requirement, each of the two reservoirs was responsible for meeting several in-stream flow
requirements, and there are numerous diversions, return flows, and local inflows along each fork of the river. Suppose we add
more reservoirs and in-stream flow requirements upstream of reservoirs 1 and 3. The value expression in the set command
compute_Min_Stor_release would become horribly complex! If you wanted to add a new flow requirement or a new
diversion to the model, you would also have to modify the set command compute_Min_Stor_release. Figuring out how to
modify this command would be like untying a difficult knot.

With a more complicated system, the second approach, using the cancel command, is much simpler. This is because the
second approach takes advantage of OASIS’ built-in continuity constraints. When OASIS solves priority 1, it is figuring out
the solution to the formula that would have been so complicated using the first approach.

Whereas the first approach has only a priority 1, the second approach has two priority levels. The second priority level
reflects the actual operating rules. The first priority level is used only to compute Min_Stor_release. The priority-1 target
commands pri_1_flow and pri_1_stor are duplicating operating goals that exist in priority 2 (in the database weights tables –
not shown). In fact priority 1 must contain separate versions of all operating goals that affect Min_Stor_release. It definitely
does not contain target Final_outflow. If you add new operating goals to priority 2, and those goals should affect the value of
Min_Stor_release, then those goals will need to be duplicated in priority 1. That is extra work, but it is simpler than the first
approach, because you do not have to interpret the complicated formula. Also remember that you do not have to compute
new values for demand or minimum flow for the extra priority level. Those values can be computed once, and applied to both
priority levels.

Note that the cancel command tells OASIS that priority 2 is not constrained to the alternate optima of priority 1. However,
even after the cancel command is issued, the results of the solve command for priority 1 remain in the variables storage001
and storage003. These variables do not change until priority 2 is solved.

-227-

4.7.3 SYNTAX OF OCL EXPRESSIONS

The OCL expression is a key element of OCL syntax. When OASIS evaluates OCL commands each time step, the
expressions are evaluated to their constant values. Expressions consist of the following types of symbols:

 constants

 non-decision variables

 decision variables

 mathematical operators

 parentheses

 functions

Constants are always stored as floating-point numbers. You may write them in regular decimal form or scientific notation.
For example, you could write 345100000 or 3.451e8 to enter the same constant. Non-decision variables are described in
section 4.7.4. Decision variables are described in section 4.7.5. Functions are documented in section 4.7.6.

OCL expressions may include the following operators, listed in the order that they will be evaluated.

 ^ Power

 * / Arithmetic multiplication and division

 + - Arithmetic addition and subtraction

 < > <= >= = != Comparison or relational operators: less-than, greater-than, less-than-or-equal-
to, greater-than-or-equal-to, equal-to, and not-equal-to

 and or Logical operators

Parentheses will always override the order of operations.

Normally, comparison operators and logical operators will be reserved for condition expressions, and condition expression
will have at least one comparison operator. However, there is no strict requirement for conditions expressions to include a
comparison operator, and comparison operators can always be used in other types of expressions. When a comparison or
logical expression is evaluated, if the expression is true, the result is one. If the expression is false, the result is zero. For
example:

(2 + 2 = 4)

evaluates to one, while

(2 + 2 = 5)

evaluates to zero. Therefore,

(2 + 2 = 4) * 8

evaluates to eight, while

(2 + 2 = 5) * 8

is zero. How, then, does the OCL expression evaluator know when a condition expression is true? Any condition expression
which evaluates to a non-zero value (any positive or negative number) is true. Any condition expression which evaluates to
zero is false.

-228-

4.7.4 SYNTAX OF OCL NON-DECISION VARIABLES

Decision variables are the unknown variables that are solved by the LP router (section 2.2.0). Non-decision variables are
evaluated to their constant values before being incorporated into the LP problem. See section 4.7.5 for discussion of decision
variables. Once the LP has been solved, the values of decision variables are stored as non-decision variables. In OCL, the
non-decision variable forms of the decision variables have the same names, except that the decision variables have an extra
letter d (for decision) at the front of their name.

This section will cover the time lags and time indices that can be applied to non-decision variables, and give the details of the
syntax of every non-decision variable recognized in OCL. Decision variables are covered in section 4.7.5.

Many variable names must include identifying information, such as node numbers, arc numbers, or the name of the pattern for
the pattern variable. This identifying information is attached to the variable — do not try to separate it with whitespace.
Remember that node numbers must always be given in three-digit form. For example, node 94 must be given as 094.

A. Time lags and time indices on non-decision variables

The time lag on a variable indicates which time step it belongs to relative to the current step. Every non-decision variable
has a default time lag, which is the lag of the most current known value of the variable. You can override the default lag by
entering a time lag or index in parentheses at the end of the variable, not separated by whitespace. For example:

 inflow950 The current time-step inflow at node 950 (default).

 inflow950(0) The current time-step inflow at node 950.

 inflow950(-1) The inflow at node 950 one time step ago.

 inflow950(-2) The inflow at node 950 two time steps ago.

 inflow950(+1) The inflow in the next time step. (The “+” sign is mandatory).

In place of the lag, you can also enter absolute time-step indexing. A dollar sign ($) indicates that the absolute index is a
period number of the year. The dollar sign should precede period numbers (1-[number of periods per year]). For simulations
using a monthly time step, you can use an M or m preceding month numbers (1-12). You may also use C or c with a number
to indicate a step of the time-step cycle (section 2.8.1).

The absolute time index must specify which period, past or present, to use. For example, if an OCL expression is being
evaluated in March, and the expression includes December inflow, should the model use inflow next December or last
December? Thus, the $, M , or C must be preceded by one of the following characters:

 + Use the future or current value.

 - Use the past value.

 = Use the value from the current year, regardless of whether it is present or past.

Examples:

 inflow950(+$3) The inflow at node 950 during the next period 3, or the current period if it is
period 3.

 inflow950(+m3) The inflow at node 950 during the next March, or the current month if it is
March.

 inflow950(-m3) The inflow at node 950 last March. If the current month is March, then use the
inflow one year ago.

 inflow950(=m6) The inflow at node 950 during June of the current year (the current water year if
on a water-year basis).

 evap220(=c3) The evaporation at node 220 during the third step of the current time-step cycle.

 evap220(-c3) The evaporation at node 220 during the third step of the previous time-step
cycle.

If you are simulating at a monthly time step, note that month number 3 (=m3) is always March. However, period number 3
(=$3) and cycle-step number 3 (=c3) are December if the simulation is on a water-year basis.

-229-

B. Abs_period variable

Syntax form (see section 4.7.0 part A for conventions):
abs_period

The absolute period of the simulation. This is a counter which starts at 1 in the first time step and increments by one for every
time step thereafter, without being ever reset. A primary use of this variable is for identifying the initial time step (e.g.
Condition : abs_period = 1). Lags and time indices will not work on this variable.

C. Ann_demand variable

Syntax form (see section 4.7.0 part A for conventions):
ann_demand[nnn]

(Obsolete). Annual demand at the node number [nnn] , in primary volume units (section 2.9.0) per year. This is simply the
value that was entered into the Demand table in the defunct Annual limit field, multiplied by the value from the defunct
Factor field. Because it is a constant, lags and time indices will not work on this variable.

D. Concentration variable

Syntax form (see section 4.7.0 part A for conventions):
concentration[nnn]([constituent name])

The concentration of water quality constituent [constituent name] at node [nnn] , measured in the primary units of
[constituent name] (section 2.9.0). For a reservoir, it is the beginning-of-period concentration, and the default is the current
time step (0). For other node types, it is the end-of-period concentration, and the default is the previous time step (-1). See
section 2.10.0.

Example: concentration350(TDS)

E. Conc_input variable at a node

Syntax form (see section 4.7.0 part A for conventions):
conc_input[nnn]([constituent name])

The water quality input for [constituent name] at node [nnn]. This represents either the concentration of the inflow, the
concentration imposed on the entire node, the fraction removed at the node, or the value added to the node; depending on the
entry in the Node table (section 4.5.3 part B). The value is either a fraction, or measured in the primary units for [constituent
name] . Default is the current time step (0). See section 2.10.0.

Example: conc_input068(TDS)

F. Conc_input variable at an arc

Syntax form (see section 4.7.0 part A for conventions):
conc_input[bbb].[eee]([constituent name])

The water quality input for [constituent name] at the arc that goes from node [bbb] to node [eee] . This represents either the
exact concentration imposed on the arc, the fraction removed at the arc, or the value added to the arc, depending on the entry
in the Arc table (section 4.5.3 part C). The value is either a fraction, or measured in the primary units for [constituent name] .
Default is the current time step (0). See section 2.10.0.

Example: conc_input530.022(THM)(-2)

G. Cycle_step variable

Syntax form (see section 4.7.0 part A for conventions):
cycle_step

The number (1 - number of steps in the cycle) of the step within the time-step cycle. Default is the current time step (0). See
section 2.8.1.

-230-

H. Day variable

Syntax form (see section 4.7.0 part A for conventions):
day

The calendar day number (1-31) of the end of the time step. Default is the current time step (0). See section 2.8.1.

I. Dead_stor variable

Syntax form (see section 4.7.0 part A for conventions):
dead_stor[nnn]

The dead storage, in primary volume units (section 2.9.0), at reservoir node [nnn] . Because it is a constant, lags and time
indices have no meaning for this variable. See section 2.4.0 part H.

J. Demand variable

Syntax form (see section 4.7.0 part A for conventions):
demand[nnn]

The period’s demand at demand node [nnn] , in primary volume units (section 2.9.0) per time step. Default is the current time
step (0). See section 2.4.0 part D.

K. Delivery variable

Syntax form (see section 4.7.0 part A for conventions):
delivery[nnn]

The period’s delivery at demand node [nnn] , in primary volume units (section 2.9.0) per time step. Default is the previous
time step (-1). (In Onevar the default is the current time step (0).) This variable is the result of solving the dDelivery decision
variable (section 4.7.5), which is the current-time-step delivery at the node. See section 2.4.0 part D.

L. Elevation variable

Syntax form (see section 4.7.0 part A for conventions):
elevation[nnn]

The beginning-of-period water-surface elevation, in primary elevation units (section 2.9.0), at reservoir node [nnn] . Default
is the current time step (0). After a solve command, the default is the beginning-of-period elevation of the next time step,
which is the same as the end-of-period elevation of the current time step. See section 2.4.0 part F.

M. Evap variable

Syntax form (see section 4.7.0 part A for conventions):
evap[nnn]

The beginning-of-period evaporation, in primary volume units (section 2.9.0), at reservoir node [nnn] . Default is the current
time step (0). After a solve command, the default is the beginning-of-period evaporation of the next time step, which is the
same as the end-of-period evaporation of the current time step. See section 2.4.0 part G.

N. Evap_rate variable

Syntax form (see section 4.7.0 part A for conventions):
evap_rate[nnn]

The evaporation rate, in primary elevation units (section 2.9.0), used to compute beginning-of-period evaporation at reservoir
node [nnn] . Default is the current time step (0). See section 2.4.0 part G.

-231-

O. Flow variable

Syntax form (see section 4.7.0 part A for conventions):
flow[bbb].[eee]

The flow through the arc that goes from node [bbb] to node [eee] , in primary volume units (section 2.9.0) per time step.
Default is the previous time step (-1). (In Onevar the default is the current time step (0).) This variable is the result of solving
the dFlow decision variable (section 4.7.5), which is the current-time-step flow in the arc.

Example: flow530.022(=$3)

P. Inflow variable

Syntax form (see section 4.7.0 part A for conventions):
inflow[nnn]

The flow from outside the system to node [nnn] , in primary volume units (section 2.9.0) per time step. Default is the current
time step (0). See section 2.4.0 part E.

Q. Julian variable

Syntax form (see section 4.7.0 part A for conventions):
julian

The day number (1-366) of the year at the end of the time step. Default is the current time step (0). The last day of the year is
always 366, and the number for leap day is skipped during non-leap years. For example, in the standard January-December
year, leap day is julian day 60. Thus, during non-leap years, the sequence goes directly from 59 to 61. See section 2.8.1.

R. Length variable

Syntax form (see section 4.7.0 part A for conventions):
length

The length of the time step, measured in days. Default is the current time step (0). This may be a non-integer value. See
section 2.8.1

S. Lower_rule variable

Syntax form (see section 4.7.0 part A for conventions):
lower_rule[nnn]

The storage value of the lower rule curve, in primary volume units (section 2.9.0), at reservoir node [nnn] . Default is the
current time step (0). See section 2.4.0 part H.

T. Max_flow variable

Syntax form (see section 4.7.0 part A for conventions):
max_flow[bbb].[eee]

The maximum flow through the arc that goes from node [bbb] to node [eee] , in primary volume units (section 2.9.0) per time
step. Default is the current time step (0). See section 2.4.0 part A.

U. Max_stor variable

Syntax form (see section 4.7.0 part A for conventions):
max_stor[nnn]

The maximum storage (capacity), in primary volume units (section 2.9.0), of reservoir node [nnn] . Because it is a constant,
lags and time indices have no meaning for this variable. See section 2.4.0 part H.

-232-

V. MaxRev_flow variable

Syntax form (see section 4.7.0 part A for conventions):
MaxRev_flow[bbb].[eee]

The maximum reverse flow (bound) through the arc that goes from node [bbb] to node [eee] , in primary volume units
(section 2.9.0) per time step. Default is the current time step (0). See section 2.4.0 part C.

W. Min_flow variable

Syntax form (see section 4.7.0 part A for conventions):
min_flow[bbb].[eee]

The minimum (target) flow through the arc that goes from node [bbb] to node [eee] , in primary volume units (section 2.9.0)
per time step. Default is the current time step (0). See section 2.4.0 part B.

X. Minute variable

Syntax form (see section 4.7.0 part A for conventions):
minute

The minute (1-1440) of the day at the end of the time step. Default is the current time step (0). See section 2.8.1.

Y. Month variable

Syntax form (see section 4.7.0 part A for conventions):
month

The calendar month number (1-12) of the end of the time step. Default is the current time step (0). See section 2.8.1.

Z. MPO_step variable

Syntax form (see section 4.7.0 part A for conventions):
MPO_step

The MPO step (1-number of MPO steps) currently being evaluated. Lags and time indices will not work on this variable. See
section 2.2.7.

AA. Num_MPO_steps variable

Syntax form (see section 4.7.0 part A for conventions):
Num_MPO_steps

The total number of MPO steps that are solved during the current time step. See section 2.2.7. Lags and time indices will not
work on this variable.

BB. Pattern variable

Syntax form (see section 4.7.0 part A for conventions):
pattern([name])

A time-pattern variable read from the OCL static database. See section 4.5.8 part B. If a pattern variable is used, then a
static file must be identified with the :STATDB: meta-keyword (section 4.7.1 part E) at the beginning of the input file. The
name of the variable (as it appears in the static file) must be given in parentheses at the end of the variable name. Default is
the current time step (0).

Example: pattern(Keswick_flow_target)

-233-

CC. Period variable

Syntax form (see section 4.7.0 part A for conventions):
period

The period number (1 - number of periods per year) of the time step. Default is the current time step (0). Lags and time
indices will not work on this variable.

If you are using a daily-time-step model, you should note the behavior of this variable during leap year. Suppose you are
using a regular calendar year (i.e. not water year). The period value on February 1 is always 32. However, the period value
of March 1 would depend on whether it is leap year. In a non-leap year, March 1 would have a period value of 60, while in
leap year, it would be 61.

DD. Prep variable

Syntax form (see section 4.7.0 part A for conventions):
prep([var name])

The variable from the pre-processor database that was identified with name [var name] in the :PREPDB: field (section 6.1.7
part U). This variable can be used only in the Onevar input file (section 6.1.3). Default is the current time step (0).

EE. Shortage variable

Syntax form (see section 4.7.0 part A for conventions):
shortage[nnn]

The shortage at demand node [nnn] , in primary volume units (section 2.9.0) per time step. Default is the previous time step
(-1). See section 2.4.0 part D.

FF. Storage variable

Syntax form (see section 4.7.0 part A for conventions):
storage[nnn]

The end-of-period storage, in primary volume units (section 2.9.0), at reservoir node [nnn] . Default is the previous time step
(-1). In other words, the default is the beginning-of-period storage for the current step. (In Onevar the default is the current
time step (0).) This variable is the result of solving the dStorage decision variable (section 4.7.5), which is the current-time-
step end-of-period storage at the node. After a solve command, the default lag for the Storage non-decision variable is the
current time step (0).

GG. Table variable

Syntax form (see section 4.7.0 part A for conventions):
table([table name])

The value of a Onevar table (section 6.1.9 part C), assumed to be current time step (0). This variable can be used only in the
Onevar input file (section 6.1.3).

By using this variable, you can create some of the effects of a spreadsheet within Onevar. However, there are restrictions on
use of the table variable. The table named by this variable must precede the table in which the variable is used. Also, the
time lag on this variable must refer to the present or a previous period, not a future period.

HH. Target_val variable

Syntax form (see section 4.7.0 part A for conventions):
target_val([target name])

The evaluated target value of the target command with [target name] (section 4.7.2 part E). Because OASIS does not
prohibit redundant names for the target command, it is possible for you to create more than one target command with [target
name] . The target_val variable always refers to the first target command with [target name] . If [target name] does not
precede the use of the target_val variable, then OASIS is unaware of the existence of [target name] when it reads the
variable, and it issues an error. Lags and time indices will not work on this variable.

-234-

Example:

Set : stor_targ
{ Condition : month = 3 and indicator > 4.5
 Value : 670
 Condition : month = 3 and indicator > 2.5
 Value : 700
 Condition : month = 3
 Value : 740
 Condition : default
 Value : 680
}
Target stor500-502 : dStorage500 + dStorage502
{ Condition : month = 3 and indicator > 4.5
 Priority : 1 Penalty+ : 0 Penalty- : 50 value : stor_targ
 Condition : month = 3 and indicator > 2.5
 Priority : 1 Penalty+ : 0 Penalty- : 70 value : stor_targ
 Condition : month = 3
 Priority : 1 Penalty+ : 10 Penalty- : 70 value : stor_targ
 Condition : default
 Priority : 1 Penalty+ : 0 Penalty- : 50 value : stor_targ
}

In the example above, you must apply extra care to make sure that the condition statements are identical between the target
command and the set command. If a change was made to one of the commands, there is a danger that you would forget to
make the identical change to the other command. This problem can be relieved by, firstly, removing the set command.
Secondly, add the set command shown below after the target command.

Set : stor_targ
{ Value : targ_val(stor500-502) }

II. Timesers variable

Syntax form (see section 4.7.0 part A for conventions):
timesers([b-path]/[c-path])

A variable read from the DSS time-series database. See section 4.6.5. If a timesers variable is used, then a DSS file must be
identified with the :TIMEDB: meta-keyword (section 4.7.1 part F) at the beginning of the input file. The b-path and c-path of
the DSS pathname must be given in parentheses at the end of the variable name. Default is the current time step (0).

Example: timesers(Kern/FORECAST_INFLOW)
timesers(SanJoaquin/FORECAST_INFLOW)(-3)

JJ. Upper_rule variable

Syntax form (see section 4.7.0 part A for conventions):
Upper_rule[nnn]

The storage value of the upper rule curve, in primary volume units (section 2.9.0), at reservoir node [nnn] . Default is the
current time step (0). See section 2.4.0 part H.

KK. Year variable

Syntax form (see section 4.7.0 part A for conventions):
year

The year number at the end of the time step.

LL. Udef variable

Syntax form (see section 4.7.0 part A for conventions):
[udef name]

A user-defined variable that was created through OCL’s udef command (section 4.7.2 part B). If the udef is created as a non-
decision variable, it is assumed to be current time-step value (0). If the udef is created as a decision variable, it is assumed to
be previous-time-step value (-1). (If the udef is created as a decision variable, Onevar assumes that it is a current-time-step
value (-1).) The current-time-step value of decision variables is an unknown and can only be applied as d[udef name] (see
section 4.7.5). OASIS does not intrinsically attach any units of measurement to the value of the udef variable. The units of
measurement for a udef variable depend on how it is used in the model.

-235-

4.7.5 SYNTAX OF OCL DECISION VARIABLES

Decision variables are the unknown variables that are solved by the LP router (section 2.2.0). Non-decision variables are
evaluated to their constant values before being incorporated into the LP problem. See section 4.7.4 for discussion of non-
decision variables. Once the LP has been solved, the values of decision variables are stored as non-decision variables. In
OCL, the non-decision variable forms of the decision variables have the same names, except that the decision variables have
an extra letter d (for decision) at the front of their name.

This section will provide the syntax of every decision variable recognized in OCL. Non-decision variables are covered in
section 4.7.4.

There are many more restrictions on the use of decision variables than on non-decision variables. The only expressions that
may contain decision variables are the [constraint expression] of the constraint command, and the [target expression] of the
target command (These expressions must be linear combinations of the decision variables). Furthermore, decision variables
cannot appear in expressions that are arguments to functions. See section 4.7.3 for more details about OCL expressions.

Many variable names must include identifying information, such as node numbers, or arc numbers. This identifying
information is attached to the variable — do not try to separate it with whitespace. Remember that node numbers must always
be given in three-digit form. For example, node 94 must be given as 094.

A. Time lags on decision variables

Every decision variable has a default time lag of zero, meaning the current time step. Explicit time lags on a decision variable
are legal only when doing MPO (section 2.2.7). The explicit lags indicate the value of the decision variable at MPO steps
other than the one currently being evaluated. If you are doing MPO, you can enter an explicit lag in parentheses at the end of
the variable, not separated by whitespace. For example:

 dDelivery910 The delivery at node 910 for the current MPO step (default).

 dDelivery910(0) The delivery at node 910 for the current MPO step.

 dDelivery910(+2) The delivery at node 910 two MPO steps ahead of the current MPO step.

 dDelivery910(-1) The delivery at node 910 one step before the current MPO step.

These time lags have similar syntax to the relative time lags on non-decision variables (section 4.7.4 part A). There is no
decision-variable equivalent to the absolute time indices of the non-decision variables.

In place of the lag, you may enter a special code into the parentheses indicating that the decision variable is to be accumulated
(that is, summed) over the MPO steps. The following codes are recognized:

 ACC The instances of the variable are summed for all MPO steps.

 +ACC The instances of the variable are summed for all MPO steps that follow the step currently being
evaluated. This does not include the step currently being evaluated.

 -ACC The instances of the variable are summed for all MPO steps that precede the step currently being
evaluated. This does not include the step currently being evaluated.

An important advantage of using the accumulation codes is that OASIS automatically adjusts the number of terms in the
expression when the number of MPO steps changes.

As an example, suppose there are four MPO steps to be solved this step. If this OCL command is used:

Constraint NoMultiple Short : { dFlow300.555(ACC) < pattern(Max300.555) }

it is the same as using this command:

Constraint NoMultiple Long-4 :
{ dFlow300.555 + dFlow300.555(+1) + dFlow300.555(+2) + dFlow300.555(+3)
 < pattern(Max300.555) }

However, if in the following time step there are only three MPO steps to be solved, the example with the ACC code is
equivalent to this command.

Constraint NoMultiple Long-3 :
{ dFlow300.555 + dFlow300.555(+1) + dFlow300.555(+2) < pattern(Max300.555) }

With the ACC code, OASIS automatically adjusts the number of terms. Without the ACC code, this task is more difficult to

-236-

write and to read, because we would have to write out both long versions of this constraint and add condition statements.

B. dDelivery variable

Syntax form (see section 4.7.0 part A for conventions):
dDelivery[nnn]

The delivery at demand node [nnn] , in primary volume units (section 2.9.0). The solved values of this variable become the
delivery non-decision variable (section 4.7.4).

Example: dDelivery165

C. dFlow variable

Syntax form (see section 4.7.0 part A for conventions):
dFlow[bbb].[eee]

The flow through the arc that goes from node [bbb] to node [eee] , in primary volume units (section 2.9.0) per time step. The
solved values of this variable become the flow non-decision variable (section 4.7.4).

Example: dFLOW450.032

D. Flow-split variables

Syntax form (see section 4.7.0 part A for conventions):
dFlowA[bbb].[eee]
dFlowB[bbb].[eee]

The segments of the flow through the arc that goes from node [bbb] to node [eee] , in primary volume units (section 2.9.0) per
time step. These segments are divided by the minimum (target) flow value of the arc (section 2.4.0 part B). The A-segment is
below the minimum flow, and the B-segment is above minimum flow. The solved values of these variables are not directly
accessible through OCL expressions.

Example: dFlowA450.032

E. dStorage variable

Syntax form (see section 4.7.0 part A for conventions):
dStorage[nnn]

The storage at reservoir node [nnn] , in primary volume units (section 2.9.0). The solved values of this variable become the
storage non-decision variable (section 4.7.4).

Example: dStorage652

F. Storage zone variables

Syntax form (see section 4.7.0 part A for conventions):
dStorA[nnn]
dStorB[nnn]
dStorC[nnn]
dStorD[nnn]

These are the individual segments of storage at reservoir node [nnn] , in primary volume units (section 2.9.0). See section
2.4.0 part H for a discussion of reservoir zones. The solved values of these variables are not directly accessible through OCL
expressions.

Example: dStorage165

-237-

G. Udef decision variables

Syntax form (see section 4.7.0 part A for conventions):
d[udef name]

The current-time-step value of a user-defined decision variable. The solved values of this variable become the non-decision
variable [udef name] (section 4.7.4). [Udef name] must have been defined with the udef command (section 4.7.2 part B).
OASIS does not intrinsically attach any units of measurement to the value of the udef variable. The units of measurement for
a udef variable depend on how it is used in the model.

Example:

Suppose we have a decision variable udef named Oscar...

(dOscar - Oscar) / Oscar

The above linear expression is equal to the percent change in Oscar. The variable dOscar is the decision variable – the value
of Oscar for the current time step. Without the d at the beginning, the variable Oscar is the most current known value of
Oscar.

-238-

4.7.6 SYNTAX OF OCL FUNCTIONS

OCL has many built-in functions that can be included in your OCL expressions (section 4.7.3). Most function arguments are
OCL expressions, although some functions take specialized arguments. Decision variables can never be part of expressions
that are arguments to functions. The arguments to the function are always enclosed in curly braces, and separated from each
other by commas.

A. Abs_val function

Syntax form (see section 4.7.0 part A for conventions):
abs_val{ [argument expression] }

Returns the absolute value of [argument expression] .

B. Accumulate function

Syntax form (see section 4.7.0 part A for conventions):
accumulate{ [variable] , [first time index] , [last time index] }

Returns the sum of the values of [variable] over several time steps. The Accum function is provided for backward
compatibility, but it is superseded by the more flexible TimeAccum function (section 4.7.6 part U). In both of these functions,
the principle of accumulating a value across several time steps is the same. However, with the Accum function, the time steps
can only be specified in a small number of ways. With the TimeAccum function, the time steps can be specified more directly
and clearly

[Variable] can be almost any non-decision variable, but it is not an expression. If you attach a time index to the end of
[variable] in parentheses, it will be ignored. [First time index] is the code for the beginning of the accumulation, and [last
time index] is the code for the end of the accumulation. Neither of the last two arguments are expressions. To construct these
time index codes, follow the rules for the codes that are attached to variables (see section 4.7.4 part A). You can use any
combination of absolute and relative time indices. If [first time index] comes after [last time index] , the function returns zero.

Almost any non-decision variable can be entered for [variable] . The only exceptions are those variables, such as abs_period,
on which lags and time indices do not work (see section 4.7.4).

For example, suppose our simulation uses a regular calendar year (January-December) and a monthly time step. The values
of the inflow at node 101 for each of the twelve months (starting in January) are:

{10, 25, 30, 55, 10, 60, 5, 8, 20, 100, 10, 31}

accumulate{ inflow101 , =m2 , =m5 } would return 120.

accumulate{ inflow101 , 0 , =m5 } would return 130 in January, 120 in February, 65 in
April, 10 in May, and zero in all months after May.

accumulate{ inflow101 , -1 , =m5 } would be 120 in March, 65 in May, 10 in June, and
zero in all months after June.

accumulate{ inflow101 , -1 , +2 } would be 120 in March and 161 in October.

accumulate{ inflow101 , -$2 , +2 } would be 120 in March, 190 in April, and 195 in
May.

C. Convert_units function

Syntax form (see section 4.7.0 part A for conventions):
convert_units{ [value expression] , [input unit name] ,
 [output unit name] , [lag expression] }

Converts the [value expression] from a value measured in [input unit name] to a value measured in [output unit name] .
[Input unit name] and [output unit name] are text strings — not expressions. These two arguments must match names of
units given in the Units table (section 4.5.3 part A). [Lag expression] is optional. If [lag expression] = x, that tells the
function that the conversion should be performed assuming the number of days x time steps ago. It is only needed when the
conversion differs by time step, such as the conversion from flow to volume when using a monthly time step.

-239-

For example, suppose that in our monthly model, the inflow to 101 is 500 million gallons (MGAL) this month. Our primary
flow units are million gallons per day (MGD). The following example

Convert_units{ inflow101 + 50 , MGAL , MGD }

would return 18.33 in June (30-day month), and 17.74 in July (31-day month). However,

Convert_units{ inflow101 + 50 , MGAL , MGD , -1 }

would return 17.74 in June (May is a 31-day month), and 18.33 in July (June is 30-day month).

D. Date_to_Jul function

Syntax form (see section 4.7.0 part A for conventions):
date_to_jul{ [month] , [day] }

Returns a julian day number (the day number of the year from 1-366) corresponding to the date given by [month] and [day] .
Both arguments can be provided as expressions. [Month] must be a number 1-12, and [day] must be a number 1-31. The
input values and the return value do not have to correspond to any model time step.

The last day of the year is always julian day number 366, and the number for leap day is skipped during non-leap years. For
example, in the standard January-December year, leap day is julian day 60. Thus, during non-leap years, the julian sequence
goes directly from 59 to 61. See section 2.8.1.

E. Elev_to_stor function

Syntax form (see section 4.7.0 part A for conventions):
elev_to_stor{ [node_number] , [elevation value expression] }

Returns the storage, measured in primary volume units (section 2.9.0), at reservoir [node number] , given the [elevation value
expression] . [Node number] cannot be an expression. [Elevation value expression] is assumed to be in primary elevation
units. This function performs a look-up using the values entered into the Reservoir S-A-E table (section 4.5.3 part J). This
function performs the inverse operation of the Stor_to_elev function.

F. Exp function

Syntax form (see section 4.7.0 part A for conventions):
exp{ [argument expression] }

Returns the base of the natural logarithm raised to the power of [argument expression] .

G. Floor function

Syntax form (see section 4.7.0 part A for conventions):
floor{ [value expression] }

Returns [value expression] rounded down to the nearest whole number.

H. Is_Leap_Year function

Syntax form (see section 4.7.0 part A for conventions):
is_leap_year{ [year expression] }

Returns 1 if [year expression] is the year number of a leap year, and otherwise returns 0. The model’s year scheme offset is
taken into account when determining if the year is a leap year. See section 2.8.0 for more discussion of time measurement in
OASIS.

I. Jul_to_Day function

Syntax form (see section 4.7.0 part A for conventions):
jul_to_day{ [julian expression] }

Returns the day number of the month of the date corresponding to [julian expresssion] , where [julian expression] is a julian
day number (the day number of the year from 1-366).

-240-

J. Jul_to_Month function

Syntax form (see section 4.7.0 part A for conventions):
jul_to_month{ [julian expression] }

Returns the month number (1-12) of the date corresponding to [julian expresssion] , where [julian expression] is a julian day
number (the day number of the year from 1-366).

K. Log10 function

Syntax form (see section 4.7.0 part A for conventions):
log10{ [argument expression] }

Returns the base-10 logarithm of [argument expression] .

L. LogN function

Syntax form (see section 4.7.0 part A for conventions):
logN{ [argument expression] }

Returns the natural logarithm of [argument expression] .

M. Lookup function

Syntax form (see section 4.7.0 part A for conventions):
lookup{ [table name] , [lookup value expression] }

This function looks up the value of the independent variable, given by [lookup value expression] , in the table named [table
name] , and returns the corresponding value of the dependent variable. [Table name] is a text string — not an expression. If
this function is used, there must be a static database identified with the :STATDB: keyword (section 4.7.1 part E) at the
beginning of the file. The lookup table with [table name] must be entered into the table called Lookup in the OCL-database
file (section 4.5.8 part A). In the Lookup table, you specify whether the table rounds up, rounds down, or interpolates
between values.

N. Max function

Syntax form (see section 4.7.0 part A for conventions):
max{ [value 1 expression] , [...] , [value n expression] }

Returns the maximum of the values of [value 1 expression]...[value n expression] . The number of arguments, n, must be at
least two, but no more than six.

O. Min function

Syntax form (see section 4.7.0 part A for conventions):
min{ [value 1 expression] , [...] , [value n expression] }

Returns the minimum of the values of [value 1 expression]...[value n expression] . The number of arguments, n, must be at
least two, but no more than six.

P. Remainder function

Syntax form (see section 4.7.0 part A for conventions):
remainder{ [argument 1 expression], [argument 2 expression] }

Returns the remainder when [argument 1 expression] is divided by [argument 2 expression] . Both arguments are rounded
down to the nearest whole number before dividing.

Q. RevLookup function

Syntax form (see section 4.7.0 part A for conventions):
RevLookup{ [table name] , [lookup value expression] }

-241-

This function looks up the value of the dependent variable, given by [lookup value expression] , in the table named [table
name] , and returns the corresponding value of the independent variable. [Table name] is a text string — not an expression.
If this function is used, there must be a static database identified with the :STATDB: keyword (section 4.7.1 part E) at the
beginning of the file. The lookup table with [table name] must be entered into the table called Lookup in the OCL-database
file (section 4.5.8 part A). In the Lookup table, you specify whether the table rounds up, rounds down, or interpolates
between values.

The RevLookup function switches the roles of the dependent and independent variables in the OCL Lookup function (4.7.6
part M). The RevLookup is intended for use when a functional relationship between two variables needs to be looked up with
either variable as input. If the functional relationship only calls for one variable to be the input and one the output, then the
Lookup function should be used, not the RevLookup function.

R. Round function

Syntax form (see section 4.7.0 part A for conventions):
round{ [value expression] , [increment expression] }

Returns the value of [value expression] rounded to the nearest multiple of [increment expression] . For example:

ROUND{ 14 , 3 }
ROUND{ 3.14159 , .001 }
ROUND{ 87.99 , 10 }

Would return 15, 3.142, and 90, respectively. Note that the rounding algorithm is based on rounding to the nearest multiple
of one. Internally , the value of [value expression] is divided by the value of [increment expression] rounded to the nearest
integer, and then multiplied by [increment expression] . When rounding to the nearest integer, the algorithm rounds decimals
of 0.5 toward the nearest even integer, to avoid bias.

S. Stor_to_area function

Syntax form (see section 4.7.0 part A for conventions):
stor_to_area{ [node_number] , [storage value expression] }

Returns the surface area, measured in primary area units (section 2.9.0), at reservoir [node number] , given the [storage value
expression] . [Node number] cannot be an expression. [Storage value expression] is assumed to be in primary volume units.
This function performs a look-up using the values entered into the Reservoir S-A-E table (section 4.5.3 part J).

T. Stor_to_elev function

Syntax form (see section 4.7.0 part A for conventions):
stor_to_elev{ [node_number] , [storage value expression] }

Returns the elevation, measured in primary elevation units (section 2.9.0), at reservoir [node number] , given the [storage
value expression] . [Node number] cannot be an expression. [Storage value expression] is assumed to be in primary volume
units. This function performs a look-up using the values entered into the Reservoir S-A-E table (section 4.5.3 part J). This
function performs the inverse operation of the Elev_to_stor function.

U. TimeAccum function

Syntax form (see section 4.7.0 part A for conventions):
TimeAccum{ [variable] , [first step code] , [first step parameters],

[last step code] , [last step parameters], }

Returns the sum of the values of [variable] over several time steps. The TimeAccum function supersedes the less flexible
Accum (section 4.7.6 part B) function. In both of these functions, the principle of accumulating a value across several time
steps is the same. However, with the Accum function, the time steps can only be specified in a small number of ways. With
the TimeAccum function, the time steps can be specified more directly and clearly.

Almost any non-decision variable can be entered for [variable] . The only exceptions are those variables, such as abs_period,
on which lags and time indices do not work (see section 4.7.4 part A). [Variable] can not be an expression. If you attach a
time index to the end of [variable] in parentheses, it will be ignored.

The time step when the accumulation calculation is started is described by [first step code] and [first step parameters] and
the time step of the end of accumulation is described by [last step code] and [last step parameters] . [First step code] and
[last step code] can not be entered as expressions, but each must match one of the codes given in the table below. [First step
parameters] and [last step parameters] each represent between one and three function arguments, and each of these
arguments can be an OCL expression. [First step parameters] must correspond to [first step code] , and [last step

-242-

parameters] must correspond to [last step code] as shown in the table:

Step
code

description Step parameters
(can be entered as expressions)

lag count of time steps relative to the current time step. [number of time steps]

$ given time step number of the year and given year [time step number of the year], [year
number]

=$ given time step number of current year [time step number of the year]

+$ next occurrence of given time step number of the year. If
current time step is the given time step, then the current time
step is used.

[time step number of the year]

-$ previous occurrence of the given time step number of the year [time step number of the year]

date given year, month, and day [month number], [day number of month],
[year number]

=date given month and day of current year [month number], [day number of month]

+date next occurrence of given month and day. If current time step
match the given month and day, then the current time step is
used.

[month number], [day number of month]

-date previous occurrence of given month and day. [month number], [day number of month]

jul given year and day number of the year (1-366) [day number of year], [year number]

=jul given day number of the current year [day number of year]

+jul next occurrence of given day number of the year. If current
time step matches given day number of the year, then current
time step is used.

[day number of year]

-jul previous occurrence of given day number of the year. [day number of year]

m given month and given year (legal only if simulation time step
is monthly)

[month number], [year number]

=m given month of current year (legal only if simulation time step
is monthly)

[month number]

+m next occurrence of given month (if current month is the given
month, then the current time step is used) (legal only if
simulation time step is monthly)

[month number]

-m previous occurrence of the given month (the current time step
is never used) (legal only if simulation time step is monthly)

[month number]

=c given cycle step number of current cycle [cycle step number]

+c next occurrence of given cycle step number. If current time
step matches the given cycle step number, then current time
step is used.

[cycle step number]

-c previous occurrence of given cycle step number [cycle step number]

The first time step and last time step can be described by any pair of the codes described above, and the same code may be
used for both. However, the first time step is assumed to precede the last time step. If OASIS evaluates the function and
determines that the last time step precedes the first time step, then the function returns zero.

The methods of offsetting time steps are related to the time lags and time indices described in section 4.7.4 part A. See

-243-

section 2.8.0 for more discussion of time measurement in OASIS.

Suppose our simulation uses a regular calendar year and a daily time step. Using OASIS’s day variable for [variable] , the
results of the TimeAccum function would be as shown in the table of examples below.

Function Value on Jan 1 Value on Jan 31

TimeAccum{day, lag, 0,
 lag, 2}

6 34

TimeAccum{day, $, 2,year,
 =$, 3}

5 5

TimeAccum{day, =jul, 1,
 +jul, 3}

6 67167

TimeAccum{day, =date, 3,1,
 +date, 3,3}

6 6

TimeAccum{day, date, month,day,year,
 lag, 2}

6 34

V. TimeOffset function

Syntax form (see section 4.7.0 part A for conventions):
TimeOffset{ [variable] , [step code] , [step parameters] }

Returns the value of [variable] at the time step given by [step code] and [step parameters] . Generally this is used to apply
the value of a variable from something other than the current time step. Some of the effects of this function can be achieved
more concisely by applying a lag or time index to the variable, as described in see section 4.7.4 part A. However, the lag or
time index can only be specified as a constant value, while the TimeOffset function can specify a time step using an OCL
expression.

Almost any non-decision variable can be entered for [variable] . The only exceptions are those variables, such as abs_period,
on which lags and time indices do not work (see section 4.7.4 part A). [Variable] can not be an expression. If you attach a
time index to the end of [variable] in parentheses, it will be ignored.

[Step code] can not be entered as an expression, but must match one of the codes given in the table below. [Step parameters]
represents between one and three function arguments, and each of these arguments can be an OCL expression. [Step
parameters] must correspond to [step code] as shown in the table:

Step
code

description Step parameters
(can be entered as expressions)

lag count of time steps relative to the current time step. [number of time steps]

$ given time step number of the year and given year [time step number of the year], [year
number]

=$ given time step number of current year [time step number of the year]

+$ next occurrence of given time step number of the year. If
current time step is the given time step, then the current time
step is used.

[time step number of the year]

-$ previous occurrence of the given time step number of the year [time step number of the year]

date given year, month, and day [month number], [day number of month],
[year number]

=date given month and day of current year [month number], [day number of month]

Step
code

description Step parameters
(can be entered as expressions)

-244-

+date next occurrence of given month and day. If current time step
match the given month and day, then the current time step is
used.

[month number], [day number of month]

-date previous occurrence of given month and day. [month number], [day number of month]

jul given year and day number of the year (1-366) [day number of year], [year number]

=jul given day number of the current year [day number of year]

+jul next occurrence of given day number of the year. If current
time step matches given day number of the year, then current
time step is used.

[day number of year]

-jul previous occurrence of given day number of the year. [day number of year]

m given month and given year (legal only if simulation time step
is monthly)

[month number], [year number]

=m given month of current year (legal only if simulation time step
is monthly)

[month number]

+m next occurrence of given month (if current month is the given
month, then the current time step is used) (legal only if
simulation time step is monthly)

[month number]

-m previous occurrence of the given month (the current time step
is never used) (legal only if simulation time step is monthly)

[month number]

=c given cycle step number of current cycle [cycle step number]

+c next occurrence of given cycle step number. If current time
step matches the given cycle step number, then current time
step is used.

[cycle step number]

-c previous occurrence of given cycle step number [cycle step number]

For example, if [step code] is date, then it must be followed by three function arguments. If [step code] is +$, then it must be
followed by one function argument.

The methods of offsetting time steps are related to the time lags and time indices described in section 4.7.4 part A. See
section 2.8.0 for more discussion of time measurement in OASIS.

Suppose our simulation uses a regular calendar year and a daily time step. Results of the TimeOffset function would be as
shown in the table of examples below:

Function Value on Jan 1, 1990 Value on Jan 31, 1990

TimeOffset{day, lag, 0} 1 31

TimeOffset{day, lag, 2} 3 2

TimeOffset{day, $, 2, year-2 } 2 2

TimeOffset{day, =jul, julian+2} 3 2

TimeOffset{year, =jul, 3} 1990 1990

TimeOffset{year, +jul, 3} 1990 1991

TimeOffset{day, =date, 3, 17} 17 17

-245-

W. Weekday function

Syntax form (see section 4.7.0 part A for conventions):
weekday{ [year] , [month] , [day] }

Returns a number code for the day of the week of [year] /[month] /[day] . The codes are 1 through 7 representing Sunday
through Saturday. All three of the arguments can be provided as expressions. [Year] must be given in 4-digit form. [Month]
must be a number 1-12, and [day] must be a number 1-31.

-246-

4.7.7 EXTERNAL MODULES

External modules are programs external to OASIS which it initializes and calls during a simulation run. A module can be
created with any computer language, so the program is created to follow the protocol for running with OASIS. There are at
least two ways to think of external modules:

 As separate modeling programs that run in parallel and communicate with OASIS. You may think of OASIS as the
model of water operation, while the external module might be a model of irrigated crops, biology, flood damage, etc.

 As user-designed routines or functions that plug in to OASIS to expand its computational ability.

Technically, there is no difference between these two approaches – they are only a matter of scale.

Computer programs are sets of very precise instructions for the computer. If there is a situation that the program was not
written to handle, the results can be unpleasant. When you want two programs to exchange information, they must agree on
exactly how to do so, to avoid situations that weren’t written into the programs. Therefore, we say that we have a protocol
for OASIS to communicate with external modules. The module must be designed according to the protocol if it and OASIS
are to function smoothly together.

At the heart of the protocol, you tell OASIS to call a module by applying the run_module command (section 4.7.2 part G) in
OCL. When this command is evaluated, OASIS passes a list of argument values to the module. If the module is threaded,
then OASIS processes the module in a thread, and continues evaluating OCL commands in its own thread. If the module is
not threaded, then OASIS waits for the module to complete its procedures. With a threaded module, OASIS does not wait
until it evaluates a second run_module command that receives output. When it is finished, the module passes argument values
back to OASIS. The module is then inactive until OASIS calls it again.

A single OASIS run can employ many different modules. The OCL :MODULE: meta-command (section 4.7.1 part G) must
be used once in the declarations-section of the OCL file for module that is used. However, OASIS will skip the initialization
if that module is never called by a run_module command in the commands section (see section 4.7.0 part G for a discussion
of the sections of the OCL file). The :MODULE: meta-command tells OASIS the user-defined name of the instance of the
module.

Modules may be newly written programs, or they may be adaptations of old programs. Adapting an old program to run as an
OASIS module is generally not difficult. The adaptation usually consists of adding a few lines of code to handle the module
protocol. Difficulties may arise if the existing program works with assumptions (particularly time-step assumptions) that are
incompatible with OASIS.

HydroLogics staff have experience developing external modules. If you are creating an external module, you will probably
find it easier to copy examples that HydroLogics can provide.

A. General steps of the external module protocol

Although we may think of the module as a program that runs in parallel with OASIS, computer programs generally must
execute steps in a series. We can say our process has parallel nature because OASIS and its modules may exchange
information every time step of simulation, even if they take turns executing within the time step.

The default case is that OASIS and the external module take turns executing within each time step. It is important to
understand that the module is inactive until OASIS tells it to execute. When OASIS lets the module execute, then OASIS is
inactive until the module returns control. The steps of the protocol describe what happens when OASIS passes control to the
module.

However, it is possible for the external module to process in its own execution thread. In this case, OASIS and the module
are truly multitasking. Note that this is only effective when running on a multiprocessor or multicore computer. It is probably
better to view this case as computing each time step with calculations in series, but having a selected part of the calculations
being done in parallel. It is only during time steps (evaluation of the run_module command) that this multitasking occurs.
The multitasking is not available for initialization or shutdown.

The thread field of the run_module command (section 4.7.2 part G) determines whether the module is processed in its own
thread – nothing within the module can control this. However, when multithreading is done, it may be important to ensure
that the procedures of the module are “thread safe”.

The general steps of the protocol are:

 Initialization. When OASIS runs, it goes through initializing steps – reading input, opening output files, and setting
up variables. OASIS’s initialization also includes initializing the module so that the module can perform the same
types of tasks. There must be a specific subroutine in the module for OASIS to call at this time. This routine is only
called once (per instance of the module) per run.

-247-

 Step. This is the part of the module OASIS calls when the OCL run_module command (section 4.7.2 part G) is
evaluated. This occurs one or more times per OASIS time period. There must be one specific routine in the module
for OASIS to call for this step, and it calls the same routine every time it evaluates the run_module command.

First, OASIS passes a list of argument values to the module. Then, OASIS passes all control to the module and waits
while the module executes its procedures. The module’s procedures might include computations and reading or
writing to files. When the module is finished with its procedures, it passes argument values back to OASIS. The
module then waits until OASIS calls it again.

 Shutdown. When OASIS closes, it calls upon the module to close itself. The module should then go through its
shutdown stage, which might include writing summary output and closing files. There must be a specific subroutine
in the module for OASIS to call for shutdown. This subroutine could be invoked for a normal completion of a run,
or when there is an error.

These steps are described as though OASIS is the director of the process. While this is in some sense true, you could also
view the external module as the director of the process, for once it has control, it decides when to return control to OASIS.
The only difference is that it is OASIS that was executed first, so it makes the first call to the module.

B. Dynamic Link Library (DLL)

An external module is contained in a dynamic-link library with the DLL extension (it might also have an EXE extension), and
it contains functions that OASIS calls. Information is passed in the arguments of the function calls. In earlier versions of
OASIS there were other protocol types for external modules. Now however, all external modules follow a DLL protocol.

A standard executable contains functions that it calls as it executes. A dynamic-link library is a program file that contains
functions for other programs to call as they execute. This system is very easy to understand and use. It is written just as if it
were a stand-alone program with functions for the three steps of the general protocol. However it simply lacks the main
function that connects the parts by looping from one time step to the next – instead, you let OASIS handle the role of the main
function.

The external module DLL is dynamically loaded into OASIS. This is so OASIS can be built without knowing how many
external module DLLs there will be in any run, or what their names are. Dynamic loading allows OASIS to determine this
information as it runs. OASIS calls the Windows function LoadLibrary, which allows it to map the addresses of the DLL
functions as it runs. The functions effectively become a part of OASIS, and you can do step-through debugging on them.

You do not need extensive experience with DLL programming, since you can copy examples that HydroLogics has already
developed.

The general steps of the external module protocol (section 4.7.7 part A) are applied as follows:

 Initialization. There must be a function called MODULE_INITIALIZE that OASIS can call. The arguments to this
function are the character string for the name of the run directory, the string length of the run directory name, and an
array of OASIS functions that the module can call and OASIS variables that the module can set. This function
returns a 2-byte integer, whose value should be 1 if the function finished satisfactorily, 0 if there was an error.

 Step. There must be a function called MODULE_STEP that OASIS can call. The first argument to this function is
an array of 4-byte floating point numbers. When OASIS calls the module, this array contains the values of the input
arguments of the run_module command. When the function returns, this array contains the values of the output
arguments of the run_module command. This function returns a 2-byte integer, whose value should be 1 if the
function finished satisfactorily, 0 if there was an error.

The second argument to MODULE_STEP is a 2-byte integer containing the number of input arguments. The third
argument is a 2-byte integer containing the number of output arguments. OASIS does nothing to check whether the
number of arguments in the input and output lists of the run_module command match some expectation built into the
module. However, it is possible to program the the module to check the number of arguments.

It is possible for there to be more than one run_module command for the same module. You may wish to program
the function MODULE_STEP so that it executes different procedures to handle the different run_module commands.

 Shutdown. There must be a function called MODULE_SHUTDOWN that OASIS can call. The function has no
arguments. The function does not return a value, since OASIS is shutting down whether the
MODULE_SHUTDOWN function had an error or not.

For more detail on each of these parts, refer to an example program.

-248-

Remember that the functions of the DLL become functions of OASIS when OASIS calls them. Thus, if you stop the program
(or there is an error) within one of the DLL functions, OASIS will terminate. There are two options for avoiding an
unfriendly shutdown:

 Return from MODULE_STEP with a value of zero. This causes OASIS to issue a generic message for a fatal error.
You can program the module to write a more descriptive error message of its own.

 Call the function module_error_shutdown in OASIS. The address of this function is passed in the third argument to
MODULE_INITIALIZE. The function is written in C++, and it is declared like so in OASIS:

extern "C" __declspec(dllexport)
 void module_error_shutdown(char error_text[])

The single argument, error_text, is a C character string (null-delimited). Write a description of the error into this
string, and OASIS will print it in a pop-up window on the screen.

HydroLogics has not developed the ability to use more than one instance of the same DLL. This ability can be developed if
there is sufficient interest. One way to work around this is to make a second copy of the DLL file, giving it a different name.

C. Parent module

It is theoretically possible for an external module to be the controlling program which calls dynamically-linked functions in
OASIS. However, this capability has never been completed. This capability can be developed if there is sufficient interest.

-249-

CHAPTER 5
REFERENCE: MODEL OUTPUT

5.0.0 INTRODUCTION

OASIS generates many kinds of output, and most of it is user-definable in some way. However, you are probably better off
relying on post-processors (Chapter 6) than looking directly at these output files. Post-processor programs read the input and
output files, and present exactly the data you want, in exactly the format that you want. Direct viewing of the OASIS output
files should be reserved for those times when you need to debug your operating rules or scrutinize a routing decision.

See section 2.6.0 for a general overview of the output files that OASIS writes. The sections of this chapter describe each of
the OASIS output files, which are

 Debug output (5.1.0)

 Balance sheet output (5.2.0)

 OCL output (5.3.0)

 Weight output (5.4.0)

 LP output (5.5.0)

 Time-series output (5.6.0)

You can quickly open the ASCII-text output files from the Output menu of the OASIS GUI (section 3.6.4). However, the
time-series output file is in HEC-DSS format, and the GUI does not provide any way to edit this file directly.

5.1.0 DEBUG OUTPUT

The debug output file is reserved for special messages, usually when there is a problem. Whenever a warning or a fatal error
occurs, an explanation is written to this file. Most of these explanatory messages are also written to a pop-up window that
appears when OASIS stops on the error. However, if you have an error, it is often worth checking the debug output to see if
there is additional information. When warning messages are written to this file, a brief message appears in the OASIS
application window, telling you to check the debug output.

You can have special warning messages written to this file when selected OCL targets experience a deviation. To use this
option, enter the WARN flag in the target command (section 4.7.2 part E).

The file is always named debug.out and it always appears in the run directory. There is no way for you to change the file
name or path. Except for the WARN flag in the target command, there is nothing you can do to define what is written to this
file.

-250-

5.2.0 BALANCE SHEET OUTPUT

The balance sheet output contains a report of every flow in and out, for every node in the system, for every time step of
simulation. It also reports basic information such as minimum flows, maximum flows, deliveries, shortages, evaporation,
elevation, and water quality. This provides a convenient way to track routing decisions across time and space. The balance
sheet does not write information that is specific to OCL.

As a security measure, OASIS is programmed to report any imbalance to this file, even though the continuity-of-flow
constraints (section 2.2.4) guarantee that there will be no imbalance. The only time you would see imbalance being reported
is when OASIS has stopped with an infeasible LP.

The file is always named balance.out and it always appears in the run directory. There is no way for you to change the file
name or path. The balance sheet output can be either on or off, depending on a flag in the control file (section 4.4.0). You
can also customize the output, as we will explain. OASIS writes information to this file at the end of every simulation year.

You should look at an example balance sheet file to help understand the format (Run OASIS to generate an example). The
balance sheet output consists of several balance sheets, printed one after another, down the page. Each balance sheet consists
of a balance summary for each node in the system (except terminal nodes). Each variable that pertains to the routing in and
out of that node is listed in a row, and each time step is in a column. Each balance sheet only covers a portion of the total
simulation time range. The method of deciding how many time steps, or columns, are in a balance sheet is called the
grouping. For example, at a daily time step, you could have a balance sheet for every week or every month. You define the
grouping in the Grouping field of the Balance Sheet Columns table (section 4.5.3 part N). The last column in every balance
sheet is a total (which can also be an average) over all the time steps in the balance sheet. If you do not use the Balance Sheet
Columns table, OASIS automatically chooses a grouping.

You can select which variables are printed as the rows of the balance sheet output in the Balance Sheet Rows table (section
4.5.3 part O). Most of the variables can be presented in two different ways. Any variables that are a type of flow can be
displayed in volume units per time step, or in flow units. Reservoir storage variables can also be displayed as elevations. In
this table, you can also specify whether a total will be reported for the variable. For flow units, reservoir storages or
elevations, and water quality, the total will actually be an average.

You tell OASIS how many decimal places to display with each value in the balance sheet through the Decimals field in the
Units table (section 4.5.3 part A).

Tips for searching the balance sheet file:
The balance sheet file can be huge, so when you want to see a particular time or a particular node, you should search for your
data using the capabilities of the software that you use to view the file. There are two tricks that can make your searching
more efficient:

 To find a date. Each balance sheet begins with this text:

BALANCE SHEET for [date]

You will want to skip directly to the balance sheet that contains the date you are looking for. You can easily let your
software search for it once you know that the word for only appears in this line at the top of each balance sheet.
Suppose your balance sheets have an annual grouping method. If you wanted to go directly to the year 1966, you
would tell your software to search for the string:

for 1966

 To find a node. The balance summary for each node begins with a row that says:

Node [number]

You will want to skip directly to the node that you are looking for. You can easily let your software search for it
once you know that the word Node only appears at the top of each node’s balance summary. There are two spaces
between the word Node and the node number. Thus, to find node 567, you would tell your software to search for the
string:

Node 567

Note that the node numbers are aligned to the right-hand side, so if it is less than three digits, you will need more
spaces between the word and the node number.

-251-

5.3.0 OCL OUTPUT

The OCL output shows the detailed results of your OCL commands. This is an important resource for determining whether
your OCL commands are properly modeling the rules that you want.

The file is always named OCL.out and it always appears in the run directory. There is no way for you to change the file name
or path. There are several categories of OCL output, and you choose which types of output you want to see by editing a flag
in the control file (section 4.4.0). The OCL output file can be very large, so it is a good idea not to generate OCL output that
you don’t need. The categories of OCL output are listed in the following sections. OASIS writes information to this file
every time step.

5.3.1 SUMMARY OF OCL INPUT

The summary of OCL input is always the first section of information written to OCL.out. There is no way for you to prevent
OASIS from writing this information. This summary is written only before the first time step of the run.

The summary of OCL input includes the following sections:

 SUMMARY OF UDEFS. This is a list of every udef that you have created either with the udef command (section
4.7.2 part B) or the segment command (section 4.7.2 part C). Each udef is preceded by a number. You may need to
know this number if you are looking at the LP output (section 5.5.0). If a udef is a decision variable, the word
DECISION appears to the right of the udef name. If the udef is a minimax variable, the word MINIMAX also appears
to the right of the udef name. If the udef is not a decision variable, and there was no SET command or other
command that assigned it a value, then the message (Not Assigned a value) displays to the right of the udef name. If
there was no OCL simulation command that made reference to the variable (other than assigning its value), then the
message (Never Referenced) appears to the right of the udef name.

 SUMMARY OF CONSTRAINTS. This is a list of every constraint that you have created with the constraint
command (section 4.7.2 part D). Each constraint is preceded by a number. You may need to know this number if
you are looking at the LP output (section 5.5.0). If the constraint is part of a minimax, the word MINIMAX also
appears to the right of the constraint name, along with the name of the minimax variable that it is associated with.

 SUMMARY OF TARGETS. This is a list of every target that you have created with the target command (section
4.7.2 part E). Each target is preceded by a number. You may need to know this number if you are looking at the LP
output (section 5.5.0). Each condition of each target gets a row in this list. The targets are listed according to their
priority levels — all of the priority 1 targets are listed first, then all of the priority 2 targets, and so on. Since the
priority level of any target can be different under different conditions, a target could appear in different sections of
the list. For each target condition, this table shows the penalties and the priority level.

 SUMMARY OF MINIMAX. This is a list of every minimax that you have created with the minimax command
(section 4.7.2 part H). Each minimax is preceded by a number. You may need to know this number if you are
looking at the LP output (section 5.5.0). For each minimax, this table shows the penalty and the priority level.

5.3.2 OCL EXPRESSION RESULTS

The section reporting OCL expression results is written to OCL.out each time step. It includes a summary of the results of the
evaluation of many of the OCL expressions. It is generally the first section to be written to OCL.out for each time step.
OASIS writes this information if the flag in the control file is 1, 3, or 4 (section 4.4.0).

The OCL-expression-results section includes information about the following OCL commands:

 Set command (section 4.7.2 part F). When OASIS evaluates a set command, it writes a row in the output file. This
row starts with the name of the command, followed by the name of the command’s condition that was found to be
true, and then the value that was computed for the variable. For example, this line:

SET:Max_Flow150.180 cond:Normal val=0.813652

Indicates that OASIS evaluated the set command named max_flow150.180, the condition named Normal was found
to be true, and thus the value of 0.813652 was assigned to the variable. If no condition was found to be true, then the
output would look like this:

SET:Max_Flow150.180 cond: -- none --

-252-

 Target command (section 4.7.2 part E). When OASIS evaluates a target command, it writes a row in the output
file. This row starts with the name of the command, followed by the name of the command’s condition that was
found to be true, and then the value that was computed for the target value. For example, this line:

TARG:Transfer cond:Jun val=56.8

Indicates that OASIS evaluated the target command named Transfer, the condition named Jun was found to be true,
and thus the value of 56.8 was assigned to the target value. If no condition was found to be true, then the output
would look like this:

TARG:Transfer cond: -- none --

For further detail about the results of the target command, you can look at the target-results section of the OCL
output file (section 5.3.3) or at the LP output file (section 5.5.0).

 Run_module command (section 4.7.2 part G). When OASIS evaluates a run_module command, it writes three
rows in the output file. The first row shows the name of the module, the second row contains a list of the values of
the input arguments that OASIS sends to the module, and the third row contains a list of the values of the output
arguments set by the module. For example:

RUN_MODULE : "W2-Scho"
 INPUT : 53, 1, 8, 4, 21
 OUTPUT : 4.7

 Constraint command (section 4.7.2 part D). When OASIS evaluates a constraint command, it writes a row in the
output file. This row starts with the name of the command, followed by an indication of whether the command’s
condition was found to be true. For example, this line:

CONSTR: WJWW_demand cond stsfd:0

Indicates that OASIS evaluated the constraint command named WJWW_demand, and the condition was found false.
If the condition was found true, a nonzero value would have been displayed after stsfd. For more detail about the
results of the constraint command, you can look at the LP output file (section 5.5.0).

 Minimax command (section 4.7.2 part H). No output is written. For further detail about the results of the minimax
command, you can look at the LP results section of the OCL output file (section 5.3.3) or at the LP output file
(section 5.5.0).

 Solve command (section 4.7.2 part I). When OASIS evaluates a solve command, it writes at least one row in the
output file. The first row contains the number of the solve command and the name of the first condition. Each
condition that is evaluated is written on a separate row, until a condition is found to be true. On the line with the
condition name, OASIS prints stsfd (an abbreviation for satisfied), followed by a value. Zero means the condition
was found to be false, nonzero means the condition was found to be true. If the command was iterative, a final row
is printed that tells what iteration number was solved and why more iterations will or will not be solved. Due to
iteration, the same solve command may be repeated many times per time step. An example of output for the solve
command:

SOLVE # 2 : cond: mode1 stsfd: 0
 cond: mode2 stsfd: 1
 SOLVED ITERATION #0001 STOPPING CRITERIA NOT MET

For further detail about the results of the solve command, you can look at the LP output file (section 5.5.0).

 Cancel command (section 4.7.2 part J). OASIS writes a row for each condition that was evaluated, and tells
whether it evaluated to true (nonzero). If a condition was not true, then you will see the text:

stsfd: 0

stsfd is an abbreviation for satisfied. If the condition was true, then you will see a nonzero value.

 Udef command (section 4.7.2 part B). No output is written. For detail about the results of the udef command, you
can look at the LP output file (section 5.5.0).

-253-

 Segment command (section 4.7.2 part C). When OASIS evaluates a segment command, it writes one row into the
output file. Note that all of the segment commands are evaluated just before the first solve command of each time
step. The row starts with the name of the variable that is segmented. This is followed by a pair of curly braces that
contains a list of each segment boundary, with the name of the corresponding segment variable inserted between
each pair of boundary values. For example, the output:

SEG: flow160.179 { 0.00 , seg01 , 1983.00 , seg02 , 3966.00 }

Shows that variable flow160.179 is split into two segments called seg01, between 0 and 1983, and seg02, between
1983 and 3966. For more detail about the results of the segment command, you can look at the LP output file
(section 5.5.0).

5.3.3 REPORT OF TARGET AND MINIMAX RESULTS

The OCL-target-and-minimax-results section is written to OCL.out each time step. It includes a summary of the results of the
target and minimax variables after the LP has been solved. It generally appears after the expression results section (section
5.3.2) within each time step. OASIS writes this information if the flag in the control file is 2, 3, or 4 (section 4.4.0).

This section of OCL.out includes information about the following OCL commands:

 Minimax command. (section 4.7.2 part H) A minimax includes several quantities that are to be equalized. For each
of these quantities, there is a constraint that forces the minimax variable to be greater than the quantity. Thus,
OASIS reports the value of the minimax variable (in parentheses in the column labeled MINIMAX VARIABLE), and
it reports the difference between the variable and each of the quantities to be equalized (the column labeled DIFF).
If the constraint for any quantity was found to be binding, there is an X in the column labeled BINDING .

If OASIS does additional iterations for the minimax command, then the report of the minimax results is written once
for each iteration. Since evaluations of OCL simulation commands may be done after the minimax, this section may
interrupt the expression-results section (section 5.3.2).

 Target command. (section 4.7.2 part E) OASIS reports the target results in separate subsections for each priority
level. All of the priority 1 targets are listed first, then all of the priority 2 targets, and so forth. This report is written
once at the end of every time step. It does not show results from a priority level that was canceled by the cancel
command (section 4.7.2 part J).

Each target gets two rows in the table. The first row, with the target name, shows the deviation of the target
expression from the target command (slack and surplus). The second row shows the weight on each deviation, and
in the last column of the second row, labeled OBJ, you can see the total points earned for this target command. This
table lists weights, meaning that a penalty will be shown as a negative weight.

5.4.0 WEIGHT OUTPUT

The weight output shows a complete list of all weights that go into the LP router. Although weights are entered in diverse
places in OASIS input, this file enables you to compare weight values in one place.

The weight values are sorted by priority level. Within the list for each priority level there may be up to five weight
categories: arcs, reservoirs, demands, OCL targets, and OCL minimax. The lists printed for the two OCL categories of
weights are identical to the summary of targets and summary of minimax that appear in OCL output (section 5.3.1). It is to
your benefit to assign recognizable names to the targets and conditions so that they are easily identified in these lists.

The file is always named weight.out and it always appears in the run directory. There is no way for you to change the file
name or path. There is nothing you can do to define what is written to this file.

5.5.0 LP OUTPUT

LP output shows exactly what is in the LP that OASIS passes to XA, the LP-solving software. It can also show the exact
results for each decision variable. This file is generated by XA itself, so it is not friendly to those who are unfamiliar with LP
concepts. Users of OASIS should not need to use the LP output very often. See section 2.2.0 for an introduction to LP
concepts for OASIS users. Chapter 7 contains a detailed explanation of how the LP is written.

The file is always named LP.out and it always appears in the run directory. There is no way for you to change the file name
or path. The LP output can be turned off, or it can be turned on at one of two levels. You specify what level by editing a flag
in the control file (section 4.4.0). The LP output file can be extremely large and time-consuming to generate, so it is a very
good idea not to generate it if you don’t need it. LP output is written every time an LP is solved.

The built-in variables in the LP are measured in primary volume units (section 2.9.0). The units of each OCL udef depend on
how you use the udef.

-254-

Depending on what level the LP output is turned on at, LP.out will include a statement of the LP, or a statement of the LP and
an LP solution report.

5.5.1 STATEMENT OF THE LP

The statement of the LP is generated if the flag in the control file is either 1 or 2 (section 4.4.0). This is the algebraic form of
the LP as XA received it from OASIS. All of the LP goals and constraints are represented in the LP. One statement of the LP
appears every time an LP is solved, which is one or more times per time step. See chapter 7 for a detailed explanation of the
LP conventions. The algebraic form includes the following parts (in the order they appear):

 Heading. OASIS stamps a heading before each statement of the LP, so you can identify which LP solve it is
associated with. The heading identifies the time step, the priority level, and the iteration number of the solve
command. If the solve command is not iterative, it still says ITER 01. This is an example of the heading:

 Time step:01/31 1931 Period # 1

-------PRIORITY 1-----ITER 01------------------------

If additional iterations are being done for the minimax command, the heading also indicates the minimax iteration
number with the label MINIMAX ITER.

 Objective function. The objective function is labeled OBJ:. It is always equal to the priority objective variable that
represents the priority level identified in the heading.

 Constraints. The LP constraints are entered in the following order:
POBJ: Priority objectives.
CON: Continuity-of-flow constraints.
FSP: Flow-splitting constraints.
SSP: Storage-splitting constraints.
SEG: Segment-command definition.
BU:, BL: Segment-command binary constraints for segment ordering.
TARG: Target-command constraints.
CSTR: Constraint-command constraints.

See section 7.3.0 for a complete description of each constraint.

 Decision-variable bounds. Section 7.2.0 describes all of the decision variables and their names, and tells how the
bounds on each variable are determined from user input. The list of decision variable bounds looks something like
this:

QT165870 <= 33.1 | QT170870 <= 0.4 | QT175870 <= 7.1 | DEL101 <= 393.9 |
DEL748 <= 44 | DEL750 <= 269.9 | DEL755 <= 343.3 | DEL760 <= 287.2 |
DEL795 <= 66.3 | DEL797 <= 160.8 | DEL810 <= 33.8798 | DEL820 <= 8469.95 |
STO600 <= 1e+006 | STO601 <= 1e+006 | STO602 <= 1e+006 | STO610 <= 100000
STO611 <= 100000 | STO640 <= 50000 | STO700 <= 1e+006 | STA700 = 0 |
STB700 <= 25000 | STC700 <= 15000 | STD700 <= 960000 | STO799 <= 1e+006 |
UDEF010 <= 8.9995e+006 | UDEF011 <= 500 | UDEF012 <= 8.9995e+006 |

If a variable has default bounds, then XA will not display it in this list. The defaults are a lower bound of zero and
no upper bound. All variables that do not have default bounds are displayed in this list. If the variable is in the list,
but one of the two bounds is not shown, then the default is being used for that bound. For example, no lower bound
is stated for, QT165870, the first variable in the list above. That is because its lower bound is zero.

 Statistics. XA reports some statistics on the size of the LP, such as the number of variables and constraints.

 Solution message. If XA finds a feasible solution, it writes a message like this:

O P T I M A L L P S O L U T I O N ---> OBJECTIVE 111707.7834

The objective is the value of the objective function — the total number of points that the LP router gets for the
overall routing decision. If there are integer decision variables, the above message is followed by one that looks like
this:

I N T E G E R S O L U T I O N ---> OBJECTIVE 111706.7514/1

This is because when there are integer variables, XA has to solve the LP in two stages. First, it solves the LP without
restricting the integer variables to integer values. Then, it solves again, this time forcing the integer variables to have
integer value.

-255-

If there was no feasible solution, XA writes a message like this:

N O F E A S I B L E S O L U T I O N ---> INFEASIBILTY 1677.75439

and it may print suggestions about how to make the LP feasible, such as:

Change row CSTR017 by 3048.000000
Change row CSTR020's upper bound by 3048.000000

These suggestions are important clues as to what is wrong with the LP. They are not necessarily the changes that
you should make. XA is merely a computer algorithm, it can not tell what you were trying to do. You will have to
carefully consider why XA suggests those particular changes and figure out what other changes might also solve the
problem.

5.5.2 LP SOLUTION REPORT

The LP solution report is generated if the flag in the control file (section 4.4.0) is 2. This is a summary of the LP solution for
every variable and every constraint. One LP solution report appears for every time an LP is solved, which is one or more
times per time step. In this section of the LP output, you can see the value of each variable and the value of the left-hand-side
of each constraint, which are easily understood. There are other types of information in this section that require some
knowledge of LP concepts.

There are two tables in the solution report. The first lists all of the decision variables (called columns in the matrix that
represents the LP). See section 7.2.0 for a description of each variable type. The second table lists all of the constraints
(called rows in the matrix that represents the LP). See section 7.3.0 for a description of each constraint type.

In the table of decision variables, some of the columns are

 COLUMNS. This gives the name of the variable.

 AT. There are several codes describing the state of the variable:

 LL The variable is at its lower bound.

 UL The variable is at its upper bound.

 EQ The upper bound equals the lower bound.

 BS The variable is in the basis. That is, it is between upper and lower bounds.

 ** The variable is outside of its bounds. If this occurs, the LP is infeasible.

 ACTIVITY. The value of the variable.

 LOWER LIMIT. The lower bound, same as in the statement of the LP (section 5.5.1).

 UPPER LIMIT. The upper bound, same as in the statement of the LP (section 5.5.1).

 REDUCED COST. If a variable is at one of its bounds, then presumably the LP router would “like” to change the
value of the variable, but the bound is preventing it. The reduced cost is the amount of change that would occur in
the objective function per unit change in the value of the bound.

-256-

In the table of constraints, some of the columns are

 ROW . This gives the name of the constraint.

 AT. There are several codes describing the state of the constraint:

 LL The constraint is at its lower bound.

 UL The constraint is at its upper bound.

 EQ The upper bound equals the lower bound.

 BS The constraint is in the basis. That is, it is between upper and lower bounds.

 ** The constraint is outside of its bounds. If this occurs, the LP is infeasible.

 ACTIVITY. The value of the left-hand-side of the constraint.

5.6.0 TIME-SERIES OUTPUT

By default, OASIS records the value of every decision variable and every variable computed by OCL into the time-series-
output database, which is in HEC-DSS format. The file is meant to be read for post-processing. Therefore, OASIS only
stores output for those variables that cannot be directly retrieved from input (time-series and pattern input can be directly
retrieved). This database can be accessed with DSS utility programs or by other software that uses HECLIB library routines.
We recommend that you rely upon OASIS’s post-processing programs (Chapter 6) rather than dealing directly with the time-
series output database.

The name of this file is given in the control file (section 4.4.0). Generally, the file belongs in the run directory. However,
because the name can be given with absolute or relative path information, you can locate the file in any directory you like. A
flag in the control file allows you to turn the time-series output on or off. The time-series output is meant to be the primary
record of the OASIS run, so you would only turn it off under very special circumstances where you need to save time and only
minimal output is needed. Even when the time-series output is nominally off, OCL udefs with the STORE flag (section 4.7.2
part B) are still written to the time-series output file.

A special text record is written to the time-series output file with B-part EXECUTION and a blank C-part. OASIS writes the
time of execution and the version number of model.exe that executed the run into this record. This information is redundant
with the information stored in the RunTime table (section 4.5.2 part G). However, it may be useful when you need to confirm
that the right files are being used.

-257-

The following table shows each of the variables that OASIS writes to the time-series output. All of the variables are measured
in primary volume units; except the OCL udefs, which are in unknown units; and the water quality variables, which are in the
primary units of the water quality constituent. See section 2.9.0 for more information about units of measurement in OASIS.
Note that the F part of the DSS pathnames are always blank.

B part C part Description

USER-DEFINED [udef name] OCL udef with [udef name] . Can be suppressed by entering the flag
NOSTORE in the udef command (4.7.2 part B).

STORAGE [nnn] The storage at reservoir node [nnn] .

LOWER RULE [nnn] The lower rule at reservoir node [nnn] . Only written if computed by OCL.

UPPER RULE [nnn] The upper rule at reservoir node [nnn] . Only written if computed by OCL.

EVAP [nnn] The evaporation at reservoir node [nnn] .

EVAP_RATE [nnn] The evaporation rate at reservoir node [nnn] . Only written if computed by
OCL.

FLOW [bbb].[eee] The flow through arc [bbb] .[eee] . Can be suppressed by entering NO in the
Output field of the Arc table (section 4.5.3 part C).

MIN_FLOW [bbb].[eee] The minimum (target) flow through arc [bbb] .[eee] . Only written if
computed by OCL.

MAX_FLOW [bbb].[eee] The maximum flow through arc [bbb] .[eee] . Only written if computed by
OCL.

MAXREV_FLOW [bbb].[eee] The minimum reverse flow through arc [bbb] .[eee] . Only written if
computed by OCL.

DELIVERY [nnn] The delivery at demand node [nnn] .

DEMAND [nnn] The demand at demand node [nnn] . Only written if computed by OCL.

INFLOW [nnn] The inflow to node [nnn] . Only written if computed by OCL.

[name] [nnn] The concentration of water quality constituent with [name] at node [nnn] .
Can be suppressed by entering NO in the Cx_Output field of the Node table
(section 4.5.3 part B), where x is the number of the constituent with [name] .

[name]_INPUT [nnn] The concentration input for water quality constituent with [name] at node
[nnn] . Only written if computed by OCL.

[name]_INPUT [bbb].[eee] The concentration input for water quality constituent with [name] at arc
[bbb].[eee] . Only written if computed by OCL.

-258-

CHAPTER 6
REFERENCE: POST-PROCESSOR PROGRAMS

6.0.0 INTRODUCTION

You run the post-processor programs after OASIS model runs are completed. The post-processors read OASIS’s input and
output data, and present it in a user-defined form. You create input files for the post-processors that specify what data to
present, and how to format it.

There are two post-processor programs: Onevar and Plot. Both programs perform essentially the same procedures to retrieve
data from OASIS’s input and output. The difference is that Onevar presents data by creating an ASCII text file of numeric
tables, while Plot plots the same data on x-y axes.

Both Onevar and Plot read a Onevar input file. This file provides formulas for the data to be presented. Onevar also gathers
information from this file for formatting the text data it presents. Plot reads an additional file, the plot-definition file, which
provides parameters for formatting the graphical plot.

Both programs can present data in either time-series order or in probability-of-exceedence order. Both are capable of
presenting data by simulation period, or redistributing the data over time steps of your choice. These options are controlled
through fields in the header of the Onevar input file (section 6.1.7).

6.1.0 ONEVAR PROGRAM

Onevar is the OASIS post-processor that presents data in tables in a text file. The unit of output for Onevar is the table. A
single Onevar output file can contain up to 200 tables. Each table contains the values of a formula, or simple text values.
There are several general format options which reinterpret the tables as columns or cells in a report (see section 6.1.4).
Onevar can also save the data to a HEC-DSS file (section 6.1.5).

The program is contained in the file Onevar.exe. This file must be found in the same directory as model.exe. You may
execute the program with command line parameters (section 4.1.0). Onevar needs to be able to read the following files when
it runs:

 The model pointer file (section 4.3.0), unless the command line argument DIR is used (section 4.1.0). The model
pointer file must be in the same directory as Onevar.exe.

 The Onevar pointer file (section 6.1.2), unless the command line argument IN is used (section 4.1.0). The Onevar
pointer file must be in the same directory as Onevar.exe.

 The control file (section 4.4.0) in the directory named by the model pointer file. The file model.cf is opened unless
another file name is specified with the command line argument CF (section 4.1.0).

 All of the model input files named in the control file, including the static databases (section 4.5.0), time-series
database (section 4.6.0), and the OCL file (section 4.7.0)

 The model time-series output database named in the control file (section 4.4.0).

 The Onevar input file (section 6.1.3) named in the Onevar pointer file or the command line (section 4.1.0).

Onevar does not initialize any external modules, or have access to input that is specific to a module.

When the command-line option NoRunInput (section 4.1.0) is applied, Onevar can run without reading a control file, model
input files, and the model time-series output database. See section 6.1.6 for more information about this special use of
Onevar.

Onevar is run by the OASIS GUI when you click on TABLES (section 3.6.4 part A). If the GUI is configured properly, you
do not need to worry about the pointer files, because the GUI manages them for you.

-259-

6.1.1 ONEVAR COMPUTATIONS

Every Onevar run prepares output from the input and output of an OASIS model run. The Onevar input file (section 6.1.3)
tells Onevar what data to present, and what processing must be done on the data. In the most basic form, Onevar simply
creates a set of time series output. Each table command (section 6.1.9 part C) in the Onevar input file creates one output time
series. Many useful Onevar input files contain nothing more than simple table commands.

There are many optional processes that can be applied to the data before it is written to output. Because there are several of
these processes, it is important to understand in what sequence the processes occur. The computations are always done in a
certain sequence. Your entries in the Onevar input file determine whether optional processes are invoked or not. The
sequence of the most common processes is:

 First, Onevar computes the values of all table commands (section 6.1.9 part C). Every Onevar input file defines at
least one table command. Every table command has at least one value expression that is evaluated. A table
command can have multiple condition expressions that determine what value expression is evaluated. Onevar
computes the value of every table for every time step in the time range.

 Next, Onevar redistributes the values of all table commands to the post-processor time step size. This is done
only if there is a :STEP: field in the Onevar input file header (section 6.1.7 part I) and the time step size it identifies
is different than the simulation time step. For each table command, a different method of time step conversion can
be done. That is, one table might use averaging, and another table might use the minimum value. This is specified in
the step fields of the table command (section 6.1.9 part C).

 Next, Onevar filters out the unwanted time steps according to a StepFilter command. This is done only if the
Onevar input file contains a StepFilter command (section 6.1.9 part E). If the StepFilter command is false for a
given time step, then that time step is rejected for all table commands. A rejected time step is not included in
subsequent processes, and it is not shown in the output file.

 Next, Onevar sorts each column of information for probability-of-exceedence tables or plots. This is done only if
the Onevar input file contains PROBABILITY in the header of the :SORT: field of the Onevar input file (section 6.1.7
part G).

 Finally, Onevar writes the output file, and it computes summary-row information as it creates the file. If the
:FILEDSS: field appears in the Onevar input file header, then output is written to a HEC-DSS file. If the :FILE:
field appears in the Onevar input file header, then output is written to a text file. If :FILEIHB: appears in the Onevar
input file header, then output is written to an IHA hydro data file (a very specialized option). Every Onevar input
file must use at least one of these three options, and it can do more than one. However, summary information is only
created for the text output file. See section 6.1.7 for details about these fields of the Onevar input file header.

The summary-row information may include the sum, average, minimum, and maximum (among other things, listed in
the Options field of the table command (section 6.1.9 part D)) for each column of data. The text output takes on one
of four different formats: TABLES, COLUMNS, SEQUENTIAL, or REPORT (section 6.1.4). For COLUMNS and
SEQUENTIAL format, the summary information is being computed once for each table command. For TABLES
format, the summary information, such as sum and maximum, is being computed for each column in each table.
There is no summary information computed for REPORT format.

The above list excludes some of the more advanced options. The following outline gives a more complete look at the Onevar
computations. Note that computations are always done in the following sequence. Your entries in the Onevar input file
determine whether optional processes are invoked or not.

1. Begin

2. Read model input files (chapter 4)

3. Read Onevar input file (section 6.1.3)

4. Read pre-processor database (section 6.1.6)

5. If a trace filter is applied (position analysis only) (section 6.1.10)

6. For each position analysis trace

7. Read time series data

8. Compute values of the trace filter table for all time steps

9. Find the WHOLERUN value of the trace filter table for the current trace

10. Return to 6 for the next position analysis trace

11. Sort the traces according to the WHOLERUN values of the trace filter table

12. Select the traces that match the TraceNum field

-260-

13. For each position analysis trace (for simulation mode means this means only one time)

14. Read time series data

15. For all table commands (section 6.1.9 part C) that precede the :TIMESHIFT: marker (section 6.1.8),
compute all table values for all time steps

16. Redistribute table values to the post-processor time-step size if :STEP: field is applied (section 6.1.7 part I)

17. For all table commands (section 6.1.9 part C) that follow the :TIMESHIFT: marker (section 6.1.8), compute
all table values for all time steps

18. Return to 13 for next position analysis trace

19. Shift the time labels according to the :DateChangeStart: field (section 6.1.7 part T)

20. Sort the table values if :SORT: PROBABILITY is applied (section 6.1.7 part G)

21. Write HEC-DSS output

22. Store virtual HEC-DSS output for any table that invokes the VirtualDSS option in the Options field

23. Write IHA hydro data file

24. Write text output, computing summary-row information (section 6.1.9 part D) as the file is written.

25. If the Onevar input file contained :NEWFILE: (section 6.1.8), return to 1 for the next section

6.1.2 ONEVAR POINTER FILE

The Onevar pointer file is an ASCII text file that must be found in the same directory as Onevar.exe. The name of the pointer
file is Onevar.cf. The sole purpose of this file is to tell Onevar the name and path of the Onevar input file.

If the command line argument IN is used (section 4.1.0), then the name of the Onevar input file comes from the command
line, and Onevar does not read the pointer file.

The pointer file must include a pipe character “|”, followed by the file name, including the path. The path can be absolute or
relative to the pointer file. The use of the pipe character allows you to put comments in the pointer file, because all text
preceding the pipe and all text following the file name are ignored. An example text from the Onevar pointer file is:

| Onevar\outflow.inp

6.1.3 ONEVAR INPUT FILE

The Onevar input file provides formulas for the data that Onevar or Plot are to present. This file also tells Onevar how to
format the output. Plot reads this file in almost exactly the same way as Onevar, so most of the following discussion applies
to Plot as well as Onevar. The major difference is that Plot ignores any information in the Onevar input file that tells how to
format the text data. See section 6.2.2 for a discussion of how Plot reads the Onevar file. Plot gets its formatting information
from a plot definition file, described in section 6.2.3.

You will want to create a library of Onevar input files, with which you can quickly analyze your simulation results. You tell
Onevar which Onevar input file to use by editing the Onevar pointer file, Onevar.cf (section 6.1.2) or with the command line
option IN (section 4.1.0).

The Onevar input file is an ASCII text file. The information is divided into two major sections: the header section and the
table-definitions section. The header section contains some information that applies to the entire Onevar run. The table-
definitions section contains information defining the individual tables and title lines. A third section, the trace-filter section,
is optional and is only available for position analysis (PA). In the trace-filter section, you can define a criteria for sorting the
traces of the PA and selecting particular traces to display from the sorted list.

When Onevar reads the Onevar input file, it uses the same OCL-parsing routines that the model relies upon when reading the
OCL input file. This means that the formulas for table values are entered as OCL expressions (see section 4.7.3 for reference
on OCL expression syntax). The Onevar input file generally follows the conventions of OCL (see section 4.7.0). Onevar has
its own set of meta commands for demarcating the Onevar input file (section 6.1.8). It also uses meta commands for entering
parameters in the header section (section 6.1.7). In place of the OCL simulation commands, Onevar uses the commands table
and title to define the elements of the Onevar output file (section 6.1.9).

-261-

Use of OCL conventions in the Onevar input file gives you many advantages:

 You write the formulas for table values using OCL expressions (section 4.7.3). Thus, the formulas may include any
non-decision variables (section 4.7.4), operations, or functions (section 4.7.6) that are available in OCL.

 OCL comment markers (section 4.7.0 part D) can be applied anywhere in the Onevar input file.

 OCL substitute names (section 4.7.1 part I) defined in the OCL input file are recognized in the Onevar input file.

 The OCL meta-commands for directing the compiler (section 4.7.1) can all be used in the Onevar input file. Thus,
you can use loops, conditionals, and substitutes, and include other files in the Onevar input file.

 You can use any data from the OCL supplemental databases (sections 4.5.8 and 4.6.5). You may even include data
in the supplemental databases that are not used by the model -- only by Onevar.

-262-

 :FILE: deliv.prn /* name of the output file */
 :FORMAT: TABLE
 :TIME: 10/31/1927 , 9/30/1934

:TABLES:

Table Pump_Indep
{ title : Independent Municipal Pumping (TAF)
 value : (max_flow602.115
 + max_flow601.150 + max_flow601.155 + max_flow600.145 + max_flow600.140
 + max_flow601.135
 + demand148 + demand118) / 1000
 format : 6.2
 options : avg min max blank total
}
TITLE : ****THIS IS AN INDEPENDENT TITLE LINE****
Table Demand_total
{ title : Total Demand
 title : (Acre-feet)
 format : 6
 value : demand101 + demand103 + demand105 + demand110 + demand115 + demand120
 + demand123 + demand125 + demand130 + demand133 + demand135 + demand140
 + demand145 + demand150 + demand155 + demand160 + demand170 + demand175
 + demand165 + demand118 + demand148
 options : total
}

Table
{ format : 7.0
 title : Total Demand minus Independent Municipal Pumping (AF)
 options : avg min blank
 value : table(Demand_total) - Table(Pump_Indep)
}
:END:

6.1.4 FORMATS OF THE ONEVAR OUTPUT FILE

There are several different format types in which Onevar output can be generated. The format type is specified in the
:FORMAT: field in the header of the Onevar input file (section 6.1.7 part F). If the :FORMAT: field is omitted, then the
format type will be TABLE.

A. TABLE format type

The TABLE format puts each series of values into a table which has

 data that reads across a row of fixed length. By default, the row represents one year, but you may specify a different
length for the row in the :GROUPING: field of the header (section 6.1.7 part K).

 one column for each period of the rows

 optional total column at the end of each row, determined by the options field in each table definition (section 6.1.9
part C).

 optional summary rows such as avg, min, and max at the bottom of each column, determined by the options field in
each table definition (section 6.1.9 part C).

Optional title lines, entered as part of the table definition, may appear before each table. Tables appear one after the other,
down the page. Independent title lines may appear between tables.

Here is an example input file for the TABLE format:

Here is the output, deliv.prn that Onevar would generate from the example input for the TABLE format type.

-263-

 Independent Municipal Pumping (TAF)

 YEAR 10/31 11/30 12/31 01/31 02/28 03/31 04/30 05/31 06/30 07/31 08/31 09/30 TOTAL
 1927 0.57 0.25 0.20 0.21 0.38 0.22 0.30 0.85 1.33 1.60 1.45 1.09 8.44
 1928 0.57 0.25 0.20 0.21 0.39 0.22 0.30 0.85 1.33 1.60 1.45 1.09 8.46
 1929 0.57 0.25 0.20 0.21 0.38 0.22 0.30 0.85 1.33 1.60 1.45 1.09 8.44
 1930 0.57 0.25 0.20 0.21 0.38 0.22 0.30 0.85 1.33 1.60 1.45 1.09 8.44
 1931 0.57 0.25 0.20 0.21 0.38 0.22 0.30 0.85 1.33 1.60 1.45 1.09 8.44
 1932 0.57 0.25 0.20 0.21 0.39 0.22 0.30 0.85 1.33 1.60 1.45 1.09 8.46
 1933 0.57 0.25 0.20 0.21 0.38 0.22 0.30 0.85 1.33 1.60 1.45 1.09 8.44
 1934 0.57 0.25 0.20 0.21 0.38 0.22 0.30 0.85 1.33 1.60 1.45 1.09 8.44

 AVG 0.57 0.25 0.20 0.21 0.38 0.22 0.30 0.85 1.33 1.60 1.45 1.09 8.45
 MIN 0.57 0.25 0.20 0.21 0.38 0.22 0.30 0.85 1.33 1.60 1.45 1.09 0.20
 MAX 0.57 0.25 0.20 0.21 0.39 0.22 0.30 0.85 1.33 1.60 1.45 1.09 1.60
****THIS IS AN INDEPENDENT TITLE LINE****

 Total Demand
 (Acre-feet)

 YEAR 10/31 11/30 12/31 01/31 02/28 03/31 04/30 05/31 06/30 07/31 08/31 09/30 TOTAL
 1927 5358 3254 2457 2304 2328 2655 3562 5179 6729 8305 8549 6981 57662
 1928 5358 3254 2457 2304 2328 2655 3562 5179 6729 8305 8549 6981 57662
 1929 5358 3254 2457 2304 2328 2655 3562 5179 6729 8305 8549 6981 57662
 1930 5358 3254 2457 2304 2328 2655 3562 5179 6729 8305 8549 6981 57662
 1931 5358 3254 2457 2304 2328 2655 3562 5179 6729 8305 8549 6981 57662
 1932 5358 3254 2457 2304 2328 2655 3562 5179 6729 8305 8549 6981 57662
 1933 5358 3254 2457 2304 2328 2655 3562 5179 6729 8305 8549 6981 57662
 1934 5358 3254 2457 2304 2328 2655 3562 5179 6729 8305 8549 6981 57662

Total Demand minus Independent Municipal Pumping (AF)

 YEAR 10/31 11/30 12/31 01/31 02/28 03/31 04/30 05/31 06/30 07/31 08/31 09/30
 1927 5357 3254 2457 2304 2327 2655 3562 5178 6728 8304 8548 6980
 1928 5357 3254 2457 2304 2327 2655 3562 5178 6728 8304 8548 6980
 1929 5357 3254 2457 2304 2327 2655 3562 5178 6728 8304 8548 6980
 1930 5357 3254 2457 2304 2327 2655 3562 5178 6728 8304 8548 6980
 1931 5357 3254 2457 2304 2327 2655 3562 5178 6728 8304 8548 6980
 1932 5357 3254 2457 2304 2327 2655 3562 5178 6728 8304 8548 6980
 1933 5357 3254 2457 2304 2327 2655 3562 5178 6728 8304 8548 6980
 1934 5357 3254 2457 2304 2327 2655 3562 5178 6728 8304 8548 6980

 AVG 5357 3254 2457 2304 2327 2655 3562 5178 6728 8304 8548 6980
 MIN 5357 3254 2457 2304 2327 2655 3562 5178 6728 8304 8548 6980

-264-

 :FILE: pump_treat.prn
 :FORMAT: column
 :TIME: 10/31/1923 , 4/30/1925

:TABLES:

title: [RunTime]
title:
title: These titles are printed because they are before the first table.
title:

Table
{ /* Notice how the titles have been aligned so they
 will fit into the 7-character column */
 title : GW Stor
 title : TAF
 format : 7.1 /* <------- the width of the column will be seven characters */
 options : MIN MAX blank
 value : (storage600 + storage601 + storage602) / 1000
}

Table
{ title : Hopyard This part of the title will be truncated
 title : CFS
 format : 9.1 /* <-------- the width of the column will be nine characters */
 value : convert_units{ flow[W_Hopyard] , AF , CFS } options : blank MIN TOTAL
}
TITLE : ########## THIS TITLE WILL NOT BE PRINTED BECAUSE IT OCCURS BETWEEN "TABLES" ####

Table
{ value : convert_units{ flow850.300 , AF , CFS }
 title : TREAT
 title : CFS
}
TITLE : THIS IS THE SECOND-TO-THE LAST LINE
TITLE : THIS IS THE LAST LINE

:END:

B. COLUMN format type

The COLUMN format has

 one row per simulation period

 one column for each data series (still called a “table”).

 optional summary rows such as avg, min, max and total at the bottom of each column, determined by the options
field in each table definition (section 6.1.9 part C). The summary rows can also be shown a some user-defined
frequency, such as once per year, as defined by the :SUMMARY: field (section 6.1.7 part L).

Optional title lines, entered as part of the table definition, may appear at the top of each column. Onevar truncates these title
lines to the column width. If independent titles are entered before the first “table”, Onevar prints them at the top of the file.
Those entered after the last “table” get printed at the bottom of the file. Independent titles do not get truncated. Independent
titles entered between “tables” are ignored, because it would not fit the format to print them between columns.

The SEQUENTIAL format appears similar to the COLUMN format, except that in SEQUENTIAL format, single columns
appear one after another, down the page. In COLUMN format, the columns appear side-by-side, across the page.

Here is an example input file for the COLUMN format:

Here is the output file, pump_treat.prn, that would be generated by the example input for the COLUMN format type.

-265-

Thu Oct 22 1998 13:26

 These titles are printed because they are before the first table.

 GW Stor Hopyard TREAT
 DATE TAF CFS CFS

 10/31/1923 223.6 2.1 34
 11/30/1923 226.1 0.0 32
 12/31/1923 231.1 0.0 25
 01/31/1923 234.7 0.0 23
 02/28/1923 238.0 0.0 23
 03/31/1923 240.8 0.0 27
 04/30/1923 242.5 0.0 36
 05/31/1923 241.5 2.1 30
 06/30/1923 237.7 2.1 37
 07/31/1923 234.7 2.1 37
 08/31/1923 232.5 2.1 37
 09/30/1923 230.9 2.1 37
 10/31/1924 229.8 2.1 34
 11/30/1924 232.3 0.0 32
 12/31/1924 234.8 0.0 25
 01/31/1924 235.7 0.0 17
 02/29/1924 236.0 0.0 17
 03/31/1924 236.5 0.0 22
 04/30/1924 237.1 0.0 30
 05/31/1924 234.7 2.1 30
 06/30/1924 231.1 2.1 37
 07/31/1924 227.4 2.1 37
 08/31/1924 223.9 2.1 37
 09/30/1924 218.7 3.6 15
 10/31/1925 214.8 3.6 0
 11/30/1925 213.4 3.6 0
 12/31/1925 212.6 3.6 0
 01/31/1925 214.2 0.0 17
 02/28/1925 216.7 0.0 17
 03/31/1925 218.6 0.0 22
 04/30/1925 219.4 0.0 30

 MIN 223.6 0.0
 MAX 242.5
 TOTAL 14.4

THIS IS THE SECOND-TO-THE LAST LINE
THIS IS THE LAST LINE

-266-

 :FILE: seq.prn
 :FORMAT: SEQUENTIAL
 :TIME: 10/31/1923 , 4/30/1924

:TABLES:

title: [RunTime]
title:

Table
{ title : Sum of the storage in 3 groundwater sub-basins (TAF)
 format : 7.1 /* <------- the width of the column will be seven characters */
 options : MIN MAX blank
 value : (storage600 + storage601 + storage602) / 1000
}
TITLE : #### THIS TITLE GETS PRINTED ####

Table
{ title : Pumping at the Hopyard wells
 title : (CFS)
 title :
 format : 12.1 /* <-------- the width of the column will be twelve characters */
 value : af_to_cfs{ flow[W_Hopyard] } options : MIN TOTAL
}
TITLE : THIS IS THE LAST LINE

:END:

C. SEQUENTIAL format type

The SEQUENTIAL format puts each data series into a table which has

 one row per simulation period

 only one column

 optional summary rows such as avg, min, max and total at the bottom of the column, determined by the options
field in each table definition (section 6.1.9 part C). The summary rows can also be shown a some user-defined
frequency, such as once per year, as defined by the :SUMMARY: field (section 6.1.7 part L).

Optional title lines, entered as part of the table definition, may appear at the top of each table. Tables appear one after the
other, down the page. Independent title lines may appear between tables.

The SEQUENTIAL format appears similar to the COLUMN format, except that in SEQUENTIAL format, single columns
appear one after another, down the page. In COLUMN format, the columns appear side-by-side, across the page.

Here is an example input file for the SEQUENTIAL format:

-267-

Thu Oct 22 1998 13:26

Sum of the storage in 3 groundwater sub-basins (TAF)
 DATE VALUE

 10/31/1923 223.6
 11/30/1923 226.1
 12/31/1923 231.1
 01/31/1923 234.7
 02/28/1923 238.0
 03/31/1923 240.8
 04/30/1923 242.5
 05/31/1923 241.5
 06/30/1923 237.7
 07/31/1923 234.7
 08/31/1923 232.5
 09/30/1923 230.9
 10/31/1924 229.8
 11/30/1924 232.3
 12/31/1924 234.8
 01/31/1924 235.7
 02/29/1924 236.0
 03/31/1924 236.5
 04/30/1924 237.1

 MIN 223.6
 MAX 242.5

 #### THIS TITLE GETS PRINTED ####
Pumping at the Hopyard wells
(CFS)

 DATE VALUE

 10/31/1923 2.1
 11/30/1923 0.0
 12/31/1923 0.0
 01/31/1923 0.0
 02/28/1923 0.0
 03/31/1923 0.0
 04/30/1923 0.0
 05/31/1923 2.1
 06/30/1923 2.1
 07/31/1923 2.1
 08/31/1923 2.1
 09/30/1923 2.1
 10/31/1924 2.1
 11/30/1924 0.0
 12/31/1924 0.0
 01/31/1924 0.0
 02/29/1924 0.0
 03/31/1924 0.0
 04/30/1924 0.0
 MIN 0.0
 TOTAL 14.4

THIS IS THE LAST LINE

Here is the output file, seq.prn, that would be generated by the example input for the SEQUENTIAL format type.

-268-

D. REPORT format type

The REPORT format prints a special table, called a report block, for each simulation period. Each report block contains a list
of the values of different formulas. One or more columns must be defined for the report block, using the :COLUMN: marker
(section 6.1.8). Each value that appears in the report block is defined as a “table”. Onevar prints each “table” value into the
row below the preceding “table” value. When it encounters a new :COLUMN: marker, it puts the next “table” into the first
row of a new column.

Each :COLUMN: marker contains the input fields pad, title, and value.

 The pad field gives the width of blank space that appears in the front of each title. This is to separate the column
from the previous column.

 The title field gives the width of the title of each “table”.

 The value field gives the width of the value of each “table”.

The total width of the column is the sum of the entries in the pad, title, and value fields.

Each Onevar input file can define only one report block. The beginning of the report block is marked with the :BLOCK:
keyword (section 6.1.8). Independent titles that appear before the :BLOCK: marker are not repeated with the report block.
Independent titles that appear after the :BLOCK: keyword but before the first :COLUMN: marker are repeated with each
report block, but appear at the top of the block, outside of any columns. You may optionally define the end of the report
block with a final :BLOCK: marker. Independent titles that appear after this marker are not repeated with each report block,
but do appear at the end of the file.

Independent titles that are entered in a report block, after a :COLUMN: marker, will be printed in the column. They will be
truncated to the total width of the column. Padding defined in the pad field of the :COLUMN: marker will not be applied to
the independent title.

You can enter a blank spot in the report block with the keyword BLANK. This has a similar effect to entering a blank
independent title line, with one difference. If you are using a delimiter (defined in the :DELIMITER: field in the heading),
then a blank spot created with BLANK will have a delimiter to separate the title part from the value part. A blank spot created
with title will not have this delimiter.

-269-

 :FILE: REPORT.prn
 :FORMAT: REPORT
 :time: 4/30/1932 , 6/30/1932

 :delimiter: |

:TABLES:

title: [RunDir]
title: [RunDesc]
title: [RunTime]

:BLOCK:

title : All flows are measured in acre-feet per year.
title : All ratios are calculated as the annual average of the monthly ratios.

:COLUMN: { pad : 1 title : 8 value : 8 }

BLANK
Table
{ title : Q300101
 format : 5 value : flow300.101
}
Table
{ title : Q305103
 format : 24 value : flow305.103
}
title : ABCDEFGHIJKLMNOPQRSTUVWXYZ

:COLUMN: { pad : 1 title : 9 value : 6 }

Table
{ title : STOR799
 format : 6.2 value : storage799 / 1000
}
Table
{ title : STOR799
 format : 6.2 value : storage799 / 1000
}
BLANK
Table
{ title : STOR799
 format : 6.2 value : storage799 / 1000
}

title : ABCDEFGHIJKLMNOPQRSTUVWXYZ
Table
{ title : STOR799
 format : 6.2 value : storage799 / 1000
}

:BLOCK:

blank
title : This title does not get repeated because it is after the :BLOCK:

:END:

Here is an example input file for the REPORT format:

Here is the output file, REPORT.prn, that would be generated by the example input for the REPORT format type.

-270-

D:\OASIS\runs\R12-B3\
A fictitious run used for examples in the manual.
Thu Oct 22 1998 13:26

 04/30/1932

 All flows are measured in acre-feet per year.
 All ratios are calculated as the annual average of the monthly ratios.
 | | STOR799 | 42.21
 Q300101 | 290| STOR799 | 42.21
 Q305103 | 264| |
ABCDEFGHIJKLMNOPQR| STOR799 | 42.21
 | |ABCDEFGHIJKLMNOPQ
 | | STOR799 | 42.21

 05/31/1932

 All flows are measured in acre-feet per year.
 All ratios are calculated as the annual average of the monthly ratios.
 | | STOR799 | 36.35
 Q300101 | 398| STOR799 | 36.35
 Q305103 | 315| |
ABCDEFGHIJKLMNOPQR| STOR799 | 36.35
 | |ABCDEFGHIJKLMNOPQ
 | | STOR799 | 36.35

 06/30/1932

 All flows are measured in acre-feet per year.
 All ratios are calculated as the annual average of the monthly ratios.
 | | STOR799 | 30.06
 Q300101 | 469| STOR799 | 30.06
 Q305103 | 349| |
ABCDEFGHIJKLMNOPQR| STOR799 | 30.06
 | |ABCDEFGHIJKLMNOPQ
 | | STOR799 | 30.06

This title does not get repeated because it is after the :BLOCK:

-271-

6.1.5 HEC-DSS OUTPUT FROM ONEVAR

The format types described in section 6.1.4 apply to Onevar’s output to text files. It is possible to instead save the data
calculated by Onevar in a HEC-DSS file. The Onevar input file can be configured so that a single execution of Onevar saves
data only in a text file, only in a HEC-DSS file, or in both a text file and a HEC-DSS file. See section 4.6.0 for more
information about HEC-DSS.

To make Onevar save data in a HEC-DSS file, enter a :FILEDSS: field in the header section of the Onevar input file (section
6.1.7 part B). This field tells the name of the file in which Onevar saves the data it calculates.

When the :FILEDSS: field appears in the header section, every Onevar table definition (section 6.1.9 part C) must contain the
fields DSSRecord, and DSSUnits (and optionally DSSVarType). The DSSRecord field tells Onevar the name of the record
that the data is to be written to. You can enter NONE into this field in order to prevent a particular table from being saved to
the HEC-DSS file.

The records that are identified in Onevar table definitions are overwritten for the time range that Onevar processes. Other
records in the HEC-DSS file are not changed, and the records that are identified in Onevar table definitions are not changed
outside of the time range that Onevar processes.

6.1.6 USING ONEVAR AS A PRE-PROCESSOR

Onevar was originally designed to post-process model input and output data. Whereas it says in section 6.1.0 that model
input and output are required to run Onevar, it is possible to run Onevar in the special pre-processor mode, in which no model
input or output files are required. To run in this mode, use the command-line option NoRunInput (section 4.1.0).

When the command-line option NoRunInput is used, Onevar reads the following files:

 The model pointer file (section 4.3.0), unless the command line argument DIR is used (section 4.1.0). The model
pointer file must be in the same directory as Onevar.exe.

 The Onevar pointer file (section 6.1.2), unless the command line argument IN is used (section 4.1.0). The Onevar
pointer file must be in the same directory as Onevar.exe.

 The Onevar input file (section 6.1.3) named in the Onevar pointer file or the command line (section 4.1.0).

 Optionally, a static database file containing a Steps table named in the Onevar input file with the :STEP: keyword
(section 6.1.7 part I).

 Optionally, any OCL static database files or OCL time-series database files named in the Onevar input file using
the :STATDB: (section 6.1.7 part D) or :TIMEDB: (section 6.1.7 part E) keywords.

 Optionally, the pre-processor database file named in the Onevar input file with the :PREPDB: keyword (section
6.1.7 part U).

In pre-processor mode, Onevar uses either the model pointer file or the command line to determine the run directory. Any
input or output files specified by the Onevar input file are assumed to be in the run directory (unless they have absolute path
names). However, Onevar does not actually read the model control file, nor does it automatically read any other files in the
run directory. Thus, you may specify a run directory that does not contain model.cf or other input files.

Ordinarily, Onevar reads the model’s time-parameters database (section 4.5.2) to determine the time steps of the model. In
pre-processor mode, this does not happen. Therefore, the time steps at which Onevar processes must be defined in one of two
ways:

 If a pre-processor database file named in the Onevar input file with the :PREPDB: keyword (section 6.1.7 part U),
then the time steps defined by the table in the pre-processor database become the time steps at which Onevar does
calculations. If the Onevar input file contains a :STEP: field (section 6.1.7 part I), then Onevar redistributes the
Onevar table values to steps defined by the :STEP: field, similar to how it behaves in its regular mode. The start and
end times for Onevar processing are decided by the first and last records in the table in the pre-processor database.

-272-

Example

 If a pre-processor database file is not named in the Onevar input file with the :PREPDB: keyword (section 6.1.7
part U), then the Onevar input file must contain a :STEP: field (section 6.1.7 part I). Whatever time steps are
defined by the :STEP: field become the time steps at which Onevar does calculations. The Onevar input file can
only contain one :STEP: field, so this leaves no way for Onevar to redistribute the Onevar table values to any other
time steps. The start and end times for Onevar processing are decided by the :TIME: keyword in the Onevar input
file (section 6.1.7 part J).

In pre-processor mode, most OCL variables, such as storage and flow can not be used. Note also that OCL functions such as
elev_to_stor and convert_units can not be used. In fact, Onevar can not do any conversion of units of measurement because it
does not read a Units table. Thus, you will need to explicitly write out any formulas for unit conversion.

When a pre-processor database file is declared with the :PREPDB: keyword, you can refer to the values in this table using
OCL prep variables (section 4.7.4).

The :PREPDB: keyword names an MS Access file and a table within that file. The file can contain other tables, but for the
purpose of reading the pre-processor database, they are ignored. The table can have any name. Each record in the table is
associated with a time step. The size of the time steps in the table must be one of four regular types: daily, weekly, monthly,
or yearly.

The fields of this table are:

Field Name Type Size Description

Year Number Integer The year of the date at the end of the time step

Month Number Integer The month of the date at the end of the time step

Day Number Integer The day of the month at the end of the time step

Data Field Number Single The data fields can have any name, and spaces are permitted within the
field name. Onevar will read a maximum of 60 data fields.

-273-

6.1.7 FIELDS OF THE ONEVAR INPUT-FILE HEADER SECTION

After the :TABLES: marker in the Onevar input file, you can define individual tables and independent titles. The header
section comes before the :TABLES: marker. In the header section, you may enter many different general input parameters,
which apply to the entire Onevar run. Each parameter is in a field identified by a meta-keyword. Most of these fields are
optional, since Onevar has default settings. These fields do not have to be in any particular order.

A. :FILE: field

Syntax form (see section 4.7.0 part A for conventions):
:FILE: [file name]

Specifies [file name], the name of a file to which Onevar writes text output. [File name] may include complete path
information. If the path information is relative, Onevar locates the file relative to the run directory. If this field is not found,
then Onevar does not write a text file. Every Onevar input file must contain this field or the :FILEDSS: field. It is permitted
to have both :FILE: and :FILEDSS: fields, in which case Onevar will write both text output and HEC-DSS output.

If a file with the name [file name] already exists when Onevar runs, then the file is overwritten. There are two exceptions:

 If the Onevar input file contains :NEWFILE:, then the file named [file name] is overwritten the first time it is
identified within that Onevar run. Subsequent passes will append to the end of the file.

 If the :FileAppend: command is given in the Onevar input file header, then the output is appended to the end of [file
name] , instead of overwriting.

B. :FILEDSS: field

Syntax form (see section 4.7.0 part A for conventions):
:FILEDSS: [file name]

Specifies [file name], the name of a file to which Onevar writes data in HEC-DSS format. [File name] may include complete
path information. If the path information is relative, Onevar locates the file relative to the run directory. If this field is not
found, then Onevar does not write data to HEC-DSS format. Every Onevar input file must contain this field or the :FILE:
field. It is permitted to have both :FILEDSS: and :FILE: fields, in which case Onevar will write both text output and HEC-
DSS output. If this field is used, then every Onevar table definition (section 6.1.9 part C) must contain a DSSRecord field.
See section 6.1.5 for more information about writing HEC-DSS data with Onevar.

If a file named [file name] already exists when Onevar is run, then Onevar adds its output into [file name]–overwriting if
those records already exist–but does not overwrite or destroy any other data in the file.

C. :FILEIHB: field

Syntax form (see section 4.7.0 part A for conventions):
:FILEIHB: [file name]

Specifies [file name], the name of a file to which Onevar writes binary data that The Nature Conservancy’s IHA software can
read as a hydro data file. This is a very specialized option that would probably only be used in conjunction with IHA
software. The OASIS GUI uses this feature of Onevar to send data to IHA as described in section 3.6.4 part C.

[File name] may include complete path information. If the path information is relative, Onevar locates the file relative to the
run directory. [File name] should include the filename extension .IHB. Onevar actually writes two files when creating a
hydro data file. The second file has the exact same name and path as [file name] , but Onevar automatically exchanges the
.IHB extension for an .INI filename extension. Thus, the Onevar input file does not specify the name of this second file
anywhere – Onevar automatically determines it from the name of the first file. If either the .IHB or the .INI file exists when
Onevar is run, then the file is overwritten.

-274-

If this field is not found, then Onevar does not write an IHA hydro data file. If this field is applied, then it is not necessary to
have a :FILE: or :FILEDSS: field. It is permitted to use this field at the same time as either or both of the :FILEDSS: or
:FILE: fields. Onevar can write output to all three formats in one run if so chosen.

D. :STATDB: field

Syntax form (see section 4.7.0 part A for conventions):
:STATDB: [file name]

Specifies [file name], the name of a MS Access file that contains the tables Pattern and/or Lookup (section 4.5.8). If [file
name] is given with relative path, then Onevar locates the file relative to the run directory. This keyword can not be used if
:STATDB: appears in the OCL input file (section 4.7.1 part E). If Onevar is run in pre-processor mode (section 6.1.6), then of
course Onevar does not read any OCL file and so there is such no conflict.

E. :TIMEDB: field

Syntax form (see section 4.7.0 part A for conventions):
:TIMEDB: [file name]

Specifies [file name], the name of a HEC-DSS input file that contains time-series variables to use in Onevar expressions. If
[file name] is given with relative path, then Onevar locates the file relative to the run directory. This keyword can appear up
to five times, but the total number of instances that can appear between the Onevar input file and the OCL input file (section
4.7.1 part F) is five. If Onevar is run in pre-processor mode (section 6.1.6), then of course Onevar does not read any OCL file
and so there is such no conflict.

Note that Onevar searches for time-series records in each of these databases in the order you list them with the :TIMEDB:
meta-commands. Once it finds the records, it stops searching.

F. :FORMAT: field

Syntax form (see section 4.7.0 part A for conventions):
:FORMAT: [format code]

Specifies the general format type for Onevar output (section 6.1.4). [Format code] may be TABLE, COLUMN ,
SEQUENTIAL, or REPORT. If this field is omitted, then the format type is TABLE.

G. :SORT: field

Syntax form (see section 4.7.0 part A for conventions):
:SORT: [sort code]

Tells Onevar whether to sort each series as time series or probability-of-exceedence series. [Sort code] should be TIME for
time series, or PROB for probability of exceedence. If this field is omitted, then the sort type will be time series. Note that
the probability type cannot be used with REPORT format.

-275-

H. :DELIMITER: field

Syntax form (see section 4.7.0 part A for conventions):
:DELIMITER: [delimiter character]

Tells Onevar to separate each unit of information on a line with [delimiter character] . The delimiter allows a spreadsheet or
other program to easily parse the Onevar output file. [Delimiter character] can be any ASCII character that does not function
as whitespace. If you wish to use the tab character as a delimiter, use the code TAB for [delimiter character] . If this field is
omitted, no delimiters will be applied.

I. :STEP: field

Syntax form (see section 4.7.0 part A for conventions):
:STEP: [time step code]

Tells Onevar to redistribute the table values into the time steps indicated by [time step code] . When this field is given,
Onevar first computes the table values at the time step of simulation. After all table values have been computed for every
time step, it then redistributes them over the time step indicated by [time step code] . If this field is omitted, then the values
are presented at the time step of simulation.

[Time step code] may refer to an Access table which defines a time-step cycle, using this format:

:STEP: [File name]:[Table name]

for example

:STEP: Onevar\step_defs.mdb:Steps_Hourly

This table has the exact same format as the Steps table in the OASIS time-parameters database (section 4.5.2 part D). [File
name] may include absolute or relative (from the run directory) path information. [Table name] may or may not be in the
time-parameters database or any other static database file (section 4.5.0). Of course, the number of MPO steps is irrelevant to
Onevar.

Alternatively, the [time step code] may be a code for one of several pre-defined time step types. The available codes are:

WEEKLY ANNUAL

DAILY YEARLY

MONTHLY WHOLERUN

ANNUAL and YEARLY have identical meaning. The code WHOLERUN tells Onevar that the entire run is to be treated as
one time step. The other codes should be self-explanatory.

When redistributing from the simulation time step to the Onevar time step, the post-processor must be told what redistribution
method to use. Therefore, if the :STEP: field is used, each table must contain a step field (section 6.1.9 part C).

If the :STEP: field points to a Steps table in a database, and that steps table contains a cycle that is fixed to the year (section
2.8.1), then the post-processor steps will use whatever year scheme (section 2.8.5) is implied in the table. Otherwise, the year
scheme for the post-processor steps is the same as for the simulation steps.

If the command line option NoRunInput is applied (see section 6.1.6), then [time step code] actually defines the time steps
that are used to calculate table values. It is thus possible to apply a second time-step code in the :STEP: field. In this case,
the syntax form would be (see section 4.7.0 part A for conventions):

:STEP: [time step code], [time step code 2]

The output is thus converted from [time step code] to [time step code 2] . [Time step code 2] can not appear in the :STEP:
field if NoRunInput is not applied in the command line, or if :PREPDB: appears in the Onevar input file header.

-276-

J. :TIME: field

Syntax form (see section 4.7.0 part A for conventions):
:TIME: [start date] , [end date]

or
:TIME: default

Tells Onevar to limit the output to the time range from [start date] to [end date] . Onevar always applies the start or end date
of the OASIS run if those dates define a range more limited than that given in the :TIME: field. If default is entered, or if this
field is omitted, then the start and end of the OASIS run are used.

The format of [Start date] and [end date] is M/D/YYYY, where M is the month number, D is the day, and YYYY is the four-
digit year. Do not put whitespace anywhere in the M/D/YYYY sequence. Note that [start date] must be separated from [end
date] by a comma.

K. :GROUPING: field

Syntax form (see section 4.7.0 part A for conventions):
:GROUPING: [grouping code]

Tells Onevar how many columns to print in the TABLE format (section 6.1.4). This field is ignored for all formats other than
TABLE.

[Grouping code] may be one of the following:

ANNUAL WHOLERUN

YEARLY MONTHLY

ANNUAL and YEARLY have identical meaning. If the code is ANNUAL, then each row in the table will contain the values
that end in one year. The column headings will be the dates at the end of the periods. Note that not every value in the column
will correspond to that exact date if the time steps are not fixed to the year (as with a WEEKLY time step). If the code is
MONTHLY, then each row in the table will contain the values that end in one month. The column headings will be the period
numbers within the month. If the code is WHOLERUN, then all values of the table will be presented in a single row.

Instead of one of the above codes, [grouping code] may be an integer number. If [grouping code] is a number, then the table
will contain that number of columns. The first period of the table is always presented in the first row and first column of the
table. The column headings will be the numbers 1-[grouping code] .

If this field is omitted, then the default grouping is ANNUAL.

L. :SUMMARY: field

Syntax form (see section 4.7.0 part A for conventions):
:SUMMARY: [summary code]

Tells Onevar how many time steps are printed between summary rows in the COLUMN and SEQUENTIAL format (section
6.1.4). This field is ignored for TABLE and REPORT formats. The summary rows may include TOTAL, MIN, MAX, AVG,
etc., as defined in the options field of the Onevar table definitions (section 6.1.9 part D). When this field is omitted from the
Onevar input file, the summary rows are printed only at the end of the file (i.e. the default [summary code] is WHOLERUN).
However, you may use this field to print summary rows at some other frequency. For example, if the MAX row is printed in
the output file, then in the default case the maximum of all time steps is reported. However, if a [summary code] of ANNUAL
is applied, then the output file will display the maximum for each year.

-277-

[Summary code] may be one of the following:

ANNUAL WHOLERUN WEEKLY

YEARLY MONTHLY DAILY

ANNUAL and YEARLY have identical meaning. Instead of one of the above codes, [summary code] may be an integer
number. If [summary code] is a number, then that number of rows appear between summary rows.

M. :PAGELENGTH: field

Syntax form (see section 4.7.0 part A for conventions):
:PAGELENGTH: [pagelength code]

Tells Onevar to repeat the column labels after an interval described by [pagelength code] . [Pagelength code] may be an
integer number, or it may be one of the following codes:

ANNUAL WEEKLY

YEARLY MONTHLY DAILY

ANNUAL and YEARLY have identical meaning. If the code is ANNUAL, Onevar reprints the headers after one year’s worth of
values have been printed. If the code is MONTHLY, Onevar reprints the headers after one month’s worth of values have been
printed, and so forth. If [pagelength code] is a number, then Onevar reprints the headers after that number of rows of values
have been printed. The total number of rows of data does not have to be an integer multiple of [pagelength code] .

For COLUMN and SEQUENTIAL format, all title lines of the “table” are repeated. For TABLE format, only the date labels
are repeated. This field is ignored for REPORT format. If [pagelength code] is zero, or this field is omitted, then the column
labels are not repeated.

N. :FileAppend: field

Syntax form (see section 4.7.0 part A for conventions):
:FileAppend:

Tells Onevar to append output to the end of the file identified by the :FILE: field in the Onevar input-file header, instead of
overwriting that file. Of course, this makes no difference if the output file does not already exist.

O. :NOLABELS: field

Syntax form (see section 4.7.0 part A for conventions):
:NOLABELS: [Label category]

Tells Onevar not to print the default row or heading labels, or both. User-defined titles are not affected by this option. If this
flag is omitted, then the default row and heading labels are printed. If [label category] is HEAD then the default heading
labels are suppressed. If [label category] is ROW then the row labels are suppressed. If [label category] is ALL then both
heading labels and row labels are suppressed.

-278-

P. :NOBLANK: field

Syntax form (see section 4.7.0 part A for conventions):
:NOBLANK:

Tells Onevar not to print default blank rows. By default, blank rows separate tables and separate column headers from the
values. This flag does not have any effect on the blank line that separates the period values from the summary values, which
is controlled by the BLANK flag in the options field of a table definition. If this flag is omitted, then the default blank rows
will be printed.

Q. :NOYEAR: field

Syntax form (see section 4.7.0 part A for conventions):
:NOYEAR:

Tells Onevar to omit the year component when printing date labels.

R. :DATESLASH: field

Syntax form (see section 4.7.0 part A for conventions):
:DATESLASH:

Tells Onevar to print a slash character before the year component of the date. By default, there is not a slash but a space
character before the year component. These examples show what the dates would look like with and without this option:

code without :DATESLASH: with :DATESLASH:

%b Sep 1993 Sep/1993

%m/%d 09/30 1993 34241

S. :DATETITLE: field

Syntax form (see section 4.7.0 part A for conventions):
:DATETITLE: [title text]

Defines [title text] , a string of text that is used in place of the default label in the header at the top of the row of dates or
frequency values. You can repeat this field up to three times in order to create a custom, multi-row title for the first column.
If necessary, Onevar will increase the width of the first column in order to make [title text] fit. Therefore, be aware of all
whitespace that you use in this field.

The way that Onevar reads [title text] is the same as for the title command (section 6.1.9 part A). After the keyword
:DATETITLE:, there is one space character. All text between this first space character and the end of the line is treated as the
[title text] , including spaces and tabs. A title definition can never include more than one line. If you include substitute names
(in brackets) (section 4.7.1 part I) in [title text] , they will be substituted in output. Comment markers (section 4.7.0 part D)
are not honored within [title text] . The title will always be truncated after 125 characters.

-279-

T. :DateChangeStart: field

Syntax form (see section 4.7.0 part A for conventions):
:DateChangeStart: [new start date]

Tells Onevar that the output should be shifted in time, such that [new start date] becomes the end date of the first time step of
the output.

If the :DateChangeStart: field is applied, then the effect is merely changing the time-step labels on the output. Firstly, this
means that the table values are computed just as they would be without the :DateChangeStart:. All variables, including
variables that reflect time parameters such as julian, month, and year, are determined according to the original time range.

Secondly, this means that Onevar does not consider whether the new time steps are of the same size as the old time step. One
situation where this might be important is if the output time steps are monthly. For example, if values that come from
November are shifted to December, the use of the :DateChangeStart: field does not cause Onevar to recalculate the value in
any way to compensate for the change from a 30-day month to a 31-day month.

U. :PREPDB: field

Syntax form (see section 4.7.0 part A for conventions):
:PREPDB:

{

 File : [file name]

 Table : [table name]

 Prep([var name 1]) = [field name 1]

 Prep([var name 2]) = [field name 2]

...

 Prep([var name N]) = [field name N]

}

Tells Onevar to read the pre-processor table [table name] in MS Access file [file name] . If [file name] is given with relative
path, then Onevar locates the file relative to the run directory. For each prep variable (section 4.7.4) that is to be used in
Onevar expressions, there must be a Prep field associating the variable with a field in the table. The number of Prep fields,
N, can be from 1 to 60. The variable names can not contain spaces, although the field names can. If the field name contains
spaces, be sure to put quotation marks around [Field name X] .

The :PREPDB: keyword can only appear if the NoRunInput command-line option is used (section 4.1.0). See section 6.1.6
for more information about pre-processor mode with Onevar.

V. :TimeEndOfStep: field

Syntax form (see section 4.7.0 part A for conventions):
:TimeEndOfStep:

Tells Onevar to assume that the starting date given in the :TIME: field of the Onevar input-file header (section 6.1.7 part J)
identifies the end of the time step. If this field is omitted, then Onevar assumes that the starting date identifies the beginning
of the time step. This field is ignored unless Onevar is called with the NoRunInput command-line option (see section 6.1.6).

-280-

6.1.8 META-KEYWORDS FOR DEMARCATING THE ONEVAR FILE

A. :TABLES: meta-command

Syntax form (see section 4.7.0 part A for conventions):
:TABLES:

Marks the start of the table-definitions section, and the end of the header section.

B. :END: meta-command

Syntax form (see section 4.7.0 part A for conventions):
:END:

This keyword marks the end of the table-definitions section, and the end of the file. Onevar ignores anything that appears
after this keyword.

C. :NEWFILE: meta-command

Syntax form (see section 4.7.0 part A for conventions):
:NEWFILE:

This keyword marks the end of the table-definitions section, similar to the :END: keyword. However, instead of signaling the
end of the file, this keyword signals the start of a whole new header section. The keyword tells Onevar that it should virtually
restart, reading everything after :NEWFILE: as if it were reading a whole new input file. If this keyword is read by Plot, Plot
treats it the same as the :END: keyword.

When Onevar encounters :NEWFILE: it closes the Onevar input file, evaluates the tables, and writes the output defined before
the :NEWFILE: marker. Then it reopens the input file and begins reading after the :NEWFILE: marker, and it evalutes the
tables and writes the output defined after the marker. A single Onevar input file can contain any number of :NEWFILE:
markers. If Onevar encounters an error before the first part is completed, it will not evaluate or even read the parts after
:NEWFILE:. Thus, a principal reason for using :NEWFILE: is that you have a process that should not be evaluated unless
another process or processes are successfully completed.

The output file declared after :NEWFILE: can be different than the output(either text or HEC-DSS) file declared before
:NEWFILE:. Furthermore, the output files can be the same. If the output files are the same, then the tables evaluted after
:NEWFILE: are appended to the end of the output file.

D. :TRACEFILTER: meta-command

Syntax form (see section 4.7.0 part A for conventions):
:TRACEFILTER:

This keyword marks the beginning of the trace-filter section, and the end of the header section. If this keyword is used, then it
must appear before the :TABLES: keyword. This keyword is optional, and it can only be used in position-analysis mode. See
section 6.1.10 for documentation of the trace-filter section.

-281-

E. :BLOCK: meta-command

Syntax form (see section 4.7.0 part A for conventions):
:BLOCK:

Defines the start and end of the information that should be repeated in the report block, when using the REPORT format type
(see section 6.1.4). This marker should not appear when using any other format type. This keyword is optional, needed only
if there are some titles that you wish to repeat in the block, and some that you do not wish to repeat. If it is used, :BLOCK:
must appear before the first :COLUMN: marker.

F. :COLUMN: meta-command

Syntax form (see section 4.7.0 part A for conventions):
:COLUMN: { pad : [pad width]

 title : [title width]

 value : [value width] }

Marks the beginning of a new column in the REPORT format (see section 6.1.4). It cannot be used with other formats. There
must be at least one :COLUMN: marker if the REPORT format is being used.

This command defines the width of each part of the column. This same width is applied to all “tables” of the column. [Pad
width] is the width of blank space at the beginning of the column. [Title width] is the width of the titles, or labels, of the
column. [Value width] is the width of the space allocated for the values in the column.

G. :TIMESHIFT: meta-command

Syntax form (see section 4.7.0 part A for conventions):
:TIMESHIFT:

Marks the beginning of a series of tables that are evaluated after other tables have been converted to post-processor time
steps. The tables that appear after the :TIMESHIFT: marker are the post-shift tables. Usage of the post-shift tables is subject
to certain restrictions. The :TIMESHIFT: marker can only appear after the :TABLES: marker, and it can only be applied
once. It cannot be used for position analysis. The :TIMESHIFT: marker should be used with the :STEP: field in the Onevar
header (section 6.1.7 part I).

The documentation of the :STEP: field (section 6.1.7 part I) describes how the table values are computed for simulation time
steps, then redistributed to post-processor time steps. The values of the post-shift tables are not computed until after the other
tables have been redistributed. After the transition to post-processor time (the “time shift”), the values of the post-shift tables
are computed at post-processor steps. However, it is important to realize that most variables are not redistributed to the new
time steps – only the Onevar tables. For that reason, the value expression of a post-shift table cannot contain most variables.
The legal variables include table, and time-parameter values such as day and abs_period (see section 4.7.4).

-282-

6.1.9 ONEVAR OUTPUT COMMANDS

The output commands are to Onevar what the simulation commands are to OCL in OASIS. These commands define specific
pieces of information to be evaluated and displayed. These commands always appear after the :TABLES: marker in the
Onevar input file.

A. Title definition

Syntax form (see section 4.7.0 part A for conventions):
title : [title text]

or
title([location code]) : [title text]

Defines a string of text to be displayed in the Onevar output file. Note that the title definition can be an independent
command, or it can be a field of the table definition (section 6.1.9 part C). In both cases, it follows the same syntax.

After the colon, there is one space character. All text between this first space character and the end of the line is treated as the
[title text] , including spaces and tabs. A title definition can never include more than one line. If you include substitute names
(in brackets) (section 4.7.1 part I) in [title text] , they will be substituted in output. Comment markers (section 4.7.0 part D)
are not honored within [title text] . The title will always be truncated after 150 characters.

Here are some examples:

title : Flow deficit at Hat Creek (MGD)
title : This is more title text
title : This title text includes two spaces in front.

It is possible to attach a [location code] value, in parentheses, to the keyword title. The value of [location code] indicates a
special location for the title. The possible values of [location code] are:

title([location code]) Location where title is written in output file

title(BeforeHead) Immediately before the column header rows (the column titles).

title(AfterHead) Immediately after the column header rows (the column titles).

title(BeforeSumm) Immediately before the summary rows.

title(AfterSumm) Immediately after the summary rows.

The location codes can only be used for titles that are independent commands. If the title is part of a table, then the location
code can not be used.

If one of the above location codes is applied to a title definition, then that title will not be displayed in the same order as
independent titles in the Onevar output file. Note that the location indicated by [location code] might occur multiple times in
the output file. For example, if the :SUMMARY: keyword (section 6.1.7 part L) appears in the Onevar header section, the
summary rows might appear at the end of every year’s worth of data. Any titles with the location code BeforeSumm would be
printed before each set of summary rows. There can be more than one title using any value of [location code] .

There is a second syntax form for the title definition, which is now obsolete, though Onevar still honors it for backwards
compatibility. The syntax form is:

title([code])

-283-

The second syntax form allows you to print information that Onevar automatically generates. In this syntax form, there is no
colon or [title text] . Instead, you attach parentheses to the word title, containing a [code] , which may be one of these options:

title([code]) Onevar prints to output Superseded by

title(description) The exact text of the run description (the second line
of the control file -- see section 4.4.0).

title : [RunDesc]

title(directory) The full, absolute path name of the run directory title : [RunDir]

title(time) The date and time that the OASIS run began. This
information is stored in the Runtime table (section 4.5.2
part G) of the time parameters database

title : [RunTime]

Each of the options in the second syntax form can be created using pre-defined substitute names (section 4.7.1 part I) with the
first syntax form of the title definition. The table above notes which substitute names supersede which options of the second
syntax form. It is preferable to use the pre-defined substitutes, since they are more general in form, more flexible, and include
more options.

By default, each title gets printed with a new-line character at the end. Either syntax form can include an ampersand, attached
to the word title, in order to suppress the new line. In this way, you can put information from more than one title definition
onto the same line. For example, this input:

title& : Run executed:
title&(time)
title : by Jim Smith

 Title : Engulf & Devour, Inc.
title :
title : Study description : [RunDesc]

would produce this output:

Run executed: Tue Oct 06 1998 16:20 by Jim Smith
Engulf & Devour, Inc.

 Study description : X32-X40.mumbo-jumbo

B. Blank definition

Syntax form (see section 4.7.0 part A for conventions):
Blank

Tells Onevar to fill this space in the report block with a blank. This is only useful for the REPORT format type (section
6.1.4). This command has a similar effect to entering a title definition with blank text, but there is a difference. If you are
using a delimiter (defined in the :DELIMITER: field in the heading), then a blank spot created with BLANK will have a
delimiter to separate the title part from the value part. A blank spot created with title will not have this delimiter.

-284-

C. Table definition

Syntax form (see section 4.7.0 part A for conventions):

 Unconditional form:
Table [name]

{

 Title : [title text]

 Legend : [legend text]

 InitCol : [initial column text]

 Format : [width].[number of decimals]

 Step : [step method]

 Value : [value expression]

 Text : [output text]

 Options : [options list]

 DSSRecord : [DSS record name]

 DSSUnits : [DSS unit name]

 DSSVarType : [DSS variable type]

}

The conditional form, which is slightly more complex, is described after all the fields of the unconditional form are described.

This command gives the formula for the output series in [value expression] , and provides formatting information for
presenting the output series. Every Onevar file may have up to 400 table definitions. The way Onevar prints the output series
in relationship to the other series depends upon the general format type (section 6.1.4).

[Name] is optional. If [name] is left blank, then Onevar will automatically assign the table’s name as the number in the
order. For example, the first table would be named “1", the second “2", etc. The name field may be used to refer to the value
of the table with the table variable (see section 4.7.4).

Of the fields within the curly braces, all except value are optional (if :FILEDSS: appears in the Onevar header section, then
the DSSRecord field is required). The fields do not have to be entered in any particular order. However, the titles will be
printed in the order that they appear in the title fields.

The title fields are optional. You may enter between zero and six title fields per table. The title fields in the table definition
follow the same syntax rules as the independent title command (section 6.1.9 part A).

The output appearance of the titles in a table definition varies by format type (see section 6.1.4 for a description of format
types).

 TABLE and SEQUENTIAL format. The titles are all printed at the top of the table. There is a blank line between
the last title and the column labels, unless suppressed with the :NOBLANK: flag.

 COLUMN format. The titles are all used as column labels. Each is be truncated to the width defined in the format
field of the table definition. The number of rows for column labels is the greatest number of title fields in any of the
table definitions. If any “table” has a lesser number of labels, blanks are used in the bottom part of the label for that
column. There is a blank line between the last title line and the data values, unless suppressed with the :NOBLANK:
flag.

 REPORT format. The first title defines a label for the data. Subsequent titles are ignored. The title is truncated at
the width given in the title field of the :COLUMN: command.

The legend field is only used if the Onevar file is being used by the Plot program. The Plot program does not require the
legend field -- it is optional. [Legend text] is used as a label for the data in the legend of the plot. [Legend text] is parsed by
the same rules as for [title text] in the title field (see section 6.1.9 part A for details). If the Onevar file is being used by
Onevar, then the legend field is ignored.

The DSSRecord field must appear if the :FILEDSS: field appears in the Onevar header section. If the :FILEDSS: keyword
does not appear, then the DSSRecord field is ignored. If NONE is entered into the DSSRecord field, then this table is not

-285-

saved to the HEC-DSS file. If the table should be saved to the HEC-DSS file, then there are two ways to enter [DSS record
name] . In neither form should there be any spaces in the entry.

 [B part] /[C part]

When the record name is entered this way, the A part and F part will be blank. The D part and E part are
automatically determined according to the output time step. Only the B and C parts are entered, and the only slash
character in the entry should be between the B and C parts.

 /[A part] /[B part] /[C part] /[D part] /[E part] /[F part] /

In this form, the A, B, C, and F parts are all specified. The D part and E part are automatically determined according
to the output time step. Whatever is entered for the D and E parts in the DSSRecord field is ignored. Slash
characters must appear at the beginning and end and between each part of the record name.

The DSSUnits field must appear if the :FILEDSS: field appears in the Onevar header section. However, if NONE is entered
into the DSSRecord field, then the DSSUnits field is not required. If the :FILEDSS: keyword does not appear, then the
DSSUnits field is ignored. [DSS unit name] is written to the unit field of the HEC-DSS record. The DssVarType field is
never required. If the :FILEDSS: keyword does not appear, then the DSSVarType field is ignored. The value in [DSS
Variable Type] is written into the Type field of the HEC-DSS record. If the DSSVarType field is not present, then the default
value of INST-VAL is written to the Type field. Possible values of [DSS Variable Type] are PER-AVER, PER-CUM , INST-
VAL, INST-CUM . OASIS software is not sensitive to the Type field of HEC-DSS records, but other software might be.

See section 6.1.5 for more information about writing to HEC-DSS with Onevar.

The InitCol field allows you to define special text that will appear at the beginning of every row of the table (before the
standard row label of date or frequency). If the InitCol field is omitted, then no special text is printed at the beginning of
every row. [Initial column text] is parsed by the same rules as [title text] in the title field. Note that any space characters at
the end of [initial column text] will be reproduced in the output. The width of the initial column is determined by the length
of [initial column text] . When the format is COLUMNS, the initial column is based on the first table definition only. If the
format is SEQUENTIAL or TABLES, each table is printed with its own initial column. The InitCol field is ignored for
REPORT format.

The format field defines the width (in ASCII characters) of the column or columns, and the number of digits to appear after
the decimal point. For the REPORT format type, [number of decimals] is used, but the [width] information is ignored.
[Width] .[number of decimals] is a single OCL “word” (it contains no whitespace). The period and the [number of decimals]
may be omitted, which has the same effect as entering a zero for [number of decimals] . If the format field is omitted, then the
default format is “8.0".

If [width] is zero, then the table or column is not printed. Onevar still computes the values of such a table -- it just does not
print the results. You can refer to such a table using the table variable (section 4.7.4), even though it is not visible..

The step field is required if the :STEP: field is applied in the heading (section 6.1.7 part I). Otherwise, this field is ignored.
[Step method] is a code telling the post-processor what method to use when redistributing the values from the simulation time
step to the time step indicated in the :STEP: field. The following codes can be used:

 sum The sum of all values from the simulation time steps which fall within the new time step.

 avg The mean of all values from the simulation time steps which fall within the new time step. This
option computes the mean as the sum of the values divided by the number of steps.

 wt_avg The mean of all values from the simulation time steps which fall within the new time step. This
option computes the mean as the sum of the values, weighted by the length of each step, divided by
the total length of the new step.

 $[per number]

The value of simulation step [per number] that falls within the new time step. For example, if the
new step is ANNUAL, $2 indicates the second period of the year.

 m[month number]

The value of month [month number] of the year. This option is only acceptable if the time-step
size of simulation is monthly and the new time step is ANNUAL.

-286-

 EOP The value at the end of the new time step.

 max The maximum of all values from the simulation time steps which fall within the new time step.

 min The minimum of all values from the simulation time steps which fall within the new time step.

 max([n]) The [n]th largest value from the simulation time steps which fall within the new time step, where
[n] is a positive integer.

 min([n]) The [n]th smallest value from the simulation time steps which fall within the new time step, where
[n] is a positive integer.

One value field or text field is always required. The table can not have both a value and text field, unless it uses the
conditional syntax form described below. For each simulation time step of the Onevar run, [value expression] is evaluated to
generate the data series that will be printed in the Onevar output file. [Value expression] follows the same syntax rules as
other OCL expressions (see section 4.7.3 for syntax rules). However, decision variables such as flow and delivery are
assumed to have a lag of 0 instead of -1. Thus, delivery325 would be current-time step delivery at node 325.

One value field or text field is always required. The table can not have both a value and text field, unless it uses the
conditional syntax form described below. [Output text] is displayed in the table output in lieu of a numeric value. After the
word text, there is a colon, then one space character. All text between this first space character and the end of the line is
treated as the [output text] , including spaces and tabs. [Output text] can never include more than one line. If you include
substitute names (in brackets) (section 4.7.1 part I) in [Output text] , they will be substituted in output. Comment markers
(section 4.7.0 part D) are not honored within [title text] . When [output text] is displayed in the output file, it is truncated, if
necessary, to the length described by [width] .[number of decimals] .

The text field can not be applied if the :SORT: field contains PROBABILITY (section 6.1.7 part G), if there is a :FILEDSS:
field (section 6.1.7 part B), or if the Onevar input file is used for Plot. When table values are redistributed to post-processor
time steps via the :STEP: field (section 6.1.7 part I), any instances of text in the table are treated as zero. It is suggested that
you should not use the text field in a table when the :STEP: field is applied in the Onevar input-file header, unless the table
comes after the :TIMESHIFT: marker .(section 6.1.8)

The options field is, fittingly, optional. [Options list] consists of zero or more words. It is recommended that you separate
the words with whitespace, although Onevar does not require it. The following flags can be entered into the options list:

 page_break For TABLE, SEQUENTIAL, or REPORT format, a page-break character will be printed at the end
of the table. This option is ignored for COLUMN format.

 descending A probability-of-exceedence sorted series will be sorted in descending order. By default, such
series are sorted in ascending order. This option is ignored for time-series sort type.

 ascending A probability-of-exceedence sorted series will be sorted in ascending order. By default, such
series are sorted in ascending order. This option is ignored for time-series sort type.

 NoPlot Plot program will not use this table definition to create a line. Plot selects the first x tables that do
not have the NoPlot option, where x is the number of lines to be plotted. This option is ignored by
Onevar.

 NoInterp When converting from simulation time steps to post-processor time steps, do not interpolate to get
values of data between the endpoints of simulation time steps Instead, the post-processor derives
the value of the data point by using the value of the time step in which that data point falls.

 VirtualDSS This is a very advanced option that is only used in conjunction with the :NEWFILE: marker. This
option tells Onevar to save the table output into a virtual HEC-DSS file. This virtual file only
exists in RAM which Onevar allocates. A subsequent run of Onevar following the :NEWFILE:
marker attempts to read from this virtual file. The virtual file is destroyed when Onevar comes to
the :END: marker. In specialized situations, this option can save run time because the results of
intermediate calculations do not need to be saved to disk.

-287-

 Summary options:

total avg min max stdvp stdev cov ACC([k]) skewp skew

AdjAvg med avp([n]) LPrs([p]) PR([p]) blank

These options determine summary rows (and in one case, a summary column) that can be
displayed at the bottom of every column in the text output file. Each of these options is discussed
in detail in section 6.1.9 part D.

Syntax form (see section 4.7.0 part A for conventions):

 Conditional form:
Table [name]

{

 Condition : [condition expression]

 Value : [value expression]

 Condition : [condition expression]

 Text : [output text]

 Condition : [condition expression]

 Value : [value expression]

 [...]

 Condition : [condition expression]

 Value : [value expression]

}

The conditional form includes all of the same fields (such as Title and Format) that are used in the unconditional form, but for
brevity the syntax form above shows only the Condition, Value, and Text fields. The difference in the conditional form is that
there can be one of more condition fields, each defining a condition block. The [condition expression] must follow the
guidelines described in section 4.7.2 part A. However, branched conditions are not possible in the Onevar table definition.

Each condition block includes exactly one value field or text field. A condition block can not contain both types of field.
Other types of fields can not come between the condition field and the value or text field. It is possible for one condition
block to designate text, while another designates a value.

As with other OCL commands, for each time step, the condition expressions are evaluated in the order they are entered. The
first condition expression that evaluates as true is selected for the time step. The [value expression] in that condition block is
then evaluated and displayed in output, or else the [output text] is displayed.

-288-

D. Summary options with the Table definition

The options field of the table command contains a list of features that can be turned on by including the respective code in the
list, or turned off by leaving the respective code out of the list. A large number of the options are for summary information
that can be displayed in a table. All of these summary options are ignored for REPORT format (section 6.1.4). Most types of
summary information appear in special rows at the bottom of the table. However, one summary option is different:

 total For TABLE format, a column labeled TOTAL appears at the end of each row, containing the sum of
all values in the row. In the stdev, avg, aavg, and avp rows, Onevar prints the standard deviation
and average of the total column. In the min and max rows, Onevar prints the minimum and
maximum over the entire table.

For COLUMN or SEQUENTIAL format, a row containing the sum over all periods appears at the
bottom of the column. Thus, for COLUMN or SEQUENTIAL format, this option functions much
like the other summary options.

The remainder of the summary options are for special rows that appear at the bottom of the table. Each such row summarizes
the values that appear in each column. The summary row works in a very similar way for TABLE, COLUMN or
SEQUENTIAL format (section 6.1.4). The principal distinction is that with TABLE format, each table command is output as
many columns, and the summary row contains a value for each column. With COLUMN and SEQUENTIAL format, the entire
table becomes a single column, so the summary row only contains a single value for each table command.

See section 6.1.7 part L for details about the :SUMMARY: field in the Onevar input file header. This field can be combined
with COLUMN or SEQUENTIAL format to report summary information over part of the time range. For example, the
summary rows can printed for each year.

The options for summary rows are:

 avg A row labeled AVG appears at the bottom with the average (arithmetic mean) for each column,
which is calculated as:

 min A row labeled MIN appears at the bottom with the minimum for each column.

 max A row labeled MAX appears at the bottom with the maximum for each column.

 stdvp A row labeled STDVP appears at the bottom with the standard deviation (standard deviation of the
sample) for each column. The standard deviation of the sample is considered to be a “biased”
estimate of the population standard deviation, and is best applied when the sample of points
represents the complete population. This is equivalent to the worksheet function STDEVP in MS
Excel. The formula for computing the standard deviation of the sample is:

 stdev A row labeled STDEV appears at the bottom with the sample standard deviation for each column.
The sample standard deviation is considered to be an “unbiased” estimate of the population
standard deviation, and is used when the sample of points does not represent the complete
population. This is equivalent to the worksheet function STDEV in MS Excel. The formula for
computing the sample standard deviation is:

-289-

 cov A row labeled COV appears at the bottom with the coefficient of variation for each column. This
is calculated as:

 ACC([k]) A row labeled ACCkk–where kk is the two-digit value of [k]–appears at the bottom with the lag-
[k] autocorrelation coefficient for the column. The lag [k] must be a numeric constant between 1
and 99. You can not enter an expression for [k] . The options field of any table can contain more
than one instance of the ACC option, each one containing a different value of [k] . The
autocorrelation coefficient is calculated:

n-kWhen calculating the autocorrelation, Onevar strictly defines x as the value k time steps ago, as
opposed to the value that merely appears to be offset by k places in the output table. If a value for

n n-keither x or x is not available, then that sample point is not included in the calculation. A point
may be excluded from the calculation due to a stepfilter (section 6.1.9 part E), a text output in the
table instead of value, or the point being outside the range of the :TIME: field (section 6.1.7 part

nJ). For example, if a row is not shown in COLUMNS format due to a stepfilter, then x for that row

n-kand x for the row k steps ahead are considered to be unknown, and neither is included in the

x.ksummation used to compute r –not even in the calculation of STDVP or M .

If the sample size N is large, then generally this means that the sample sets of x and y are mostly
overlapping. However, there are always some points that are not contained in both sets, so the

n xmean and standard deviation of the unlagged values, M and STDVP , is generally not precisely the

y ysame as the mean and standard deviation of the lagged values, M and STDVP

 skewp A row labeled SKEWP appears at the bottom with the coefficient of skewness of the sample for
each column. This is considered a “biased” estimate of the coefficient of skewness, and it is best
applied when the points in the column represent the complete population. The coefficient of
skewness of the sample is calculated as:

 skew A row labeled SKEW appears at the bottom with the sample coefficient of skewness for each
column. This is considered an “unbiased” estimate of the coefficient of skewness, and it is best
applied when the points in the column do not represent the complete population. The sample
coefficient of skewness is calculated as:

 AdjAvg A row labeled AAVG appears at the bottom with the adjusted average for each column. This is
computed as:

 med A row labeled MED appears at the bottom with the median for each column. This same value can
be reported using the option PR(0.5) described below.

 avp([n]) A row labeled AVP appears at the bottom with the product of the average (mean) and [n] for each
column. The multiplier [n] must be a numeric constant. You can not enter an expression for [n] .

-290-

You may only include the avp option once for each table, but you may use a different value of [n]
for each table.

 LPrs([p]) A row labeled LPrs[p] appears at the bottom with the value with a [p] chance of non-exceedence,
as computed by a log-Pearson III distribution fitted to the values in the column. The multiplier [p]
must be a numeric constant between 0 and 1 (non-inclusive). You can not enter an expression for
[p] . The options field of any table can contain more than one instance of the LPrs option, each
one containing a different value of [p] .

The log-Pearson distribution is developed using the unbiased sample standard deviation and
sample skewness as shown with the STDEV and SKEW options above, in imitation of the USGS
software SWSTAT. Furthermore, Onevar follows the example of SWSTAT by basing the
distribution only on the nonzero values in the column. The distribution is then adjusted according
to the number of zeros in the column.

The LPrs option is similar to the PR option listed below. However, LPrs is used to get quantile
values from a standard distribution function, whereas PR is used to get quantile values directly
from the distribution of the sample. A log-Pearson III distribution is recommended by the US
Water Resources Council as a method for flood flow frequency studies. It is considered a suitable
estimator for the probability of extremely low-flow or high-flow events.

 PR([p]) A row labeled PR[p] appears at the bottom with the value with a [p] chance of non-exceedence, as
computed directly from the cumulative distribution of the sample. The multiplier [p] must be a
numeric constant between 0 and 1 (non-inclusive). You can not enter an expression for [p] . The
options field of any table can contain more than one instance of the PR option, each one containing
a different value of [p] .

The PR option is similar to the LPrs option listed below. However, LPrs is used to get quantile
values from a standard distribution function, whereas PR is used to get quantile values directly
from the distribution of the sample. Onevar internally sorts all values in the column, and assigns
each value a probability p, where p=n/(N+1), where n=the rank of the value and N=the number of
values. As needed, Onevar uses linear interpolation to get the value that corresponds to [p] . This
may be described as finding the “percentile” value. For example, PR(0.75) tells Onevar to report
the 75 percentile value. The option PR(0.5) would return the median, also available with the MED
option described above.

 blank A blank line separates the summary lines at the bottom (min, max, avg, etc.) from the other lines.

-291-

E. StepFilter command

Syntax form (see section 4.7.0 part A for conventions):

 Unconditional form:
StepFilter

{ Value : [value expression] }

 Conditional form:
StepFilter

{

 Condition : [condition expression]

 Value : [value expression]

 [...]

 Condition : [condition expression]

 Value : [value expression]

}

Provides a basis for rejecting (“filtering out”) some time steps from the output display. If a StepFilter command is applied in
the Onevar output file, then only those time steps when [value expression] evaluates as true or as a nonzero value are shown
in the output. Any time steps when [value expression] evaluates as false or zero are not shown in the output, and they are not
included in the calculations for the summary rows of the tables, such as MIN, MAX, and AVG (section 6.1.9 part C).

The StepFilter command can appear anywhere in the :TABLES: section of the Onevar input file – before, after, or in between
table definitions. However, the StepFilter command must be positioned in relation to the :TIMESHIFT: marker, as described
below. There can be no more than one instance of this command in a Onevar input file. If a StepFilter command is not
applied in a Onevar input file, then no time steps are filtered out of the output.

If table values are being redistributed to new time steps via the :STEP: field (section 6.1.7 part I), then the StepFilter
command can only appear after the :TIMESHIFT: marker (section 6.1.8). If the :STEP: field is not applied, then the
StepFilter command can not appear after the :TIMESHIFT: marker. When redistribution to new time steps is performed, the
filter rule is determined based on the post-processor time steps, not the model time steps.

The StepFilter command can be entered in either conditional or unconditional form. The conditional form may have one or
many conditions. The [condition expression] must follow the guidelines described in section 4.7.2 part A. However,
branched conditions are not possible with this command. Each condition field is the head of a condition block. Each
condition block must have a value field.

As with other OCL commands, for each time step, the condition expressions are evaluated in the order they are entered. The
first condition expression that evaluates as true is selected for the time step. The [value expression] in that condition block is
then evaluated. It is the [value expression] that ultimately determines whether a time step is rejected via the StepFilter
command. If no condition evaluated as true during a time step, then that time step is rejected.

When step-filtering occurs, the effect on the output tables varies by format type (see section 6.1.4 for a description of format
types).

 COLUMN and SEQUENTIAL format. If a time step is filtered out, then the corresponding row in the output file is
skipped, and no blank space is shown to represent the time step.

 TABLE format. If an entire column of the table is composed of time steps that are filtered out, then that column is
entirely omitted from the output display. If a time step is filtered out, but its column contains other time steps that
are not filtered out, then a blank space is shown for that time step. If an entire row of the table is composed of time
steps that are filtered out, then blank space is shown for the entire row.

 REPORT format. If a time step is filtered out, then the corresponding report block in the output file is skipped, and
no blank space is shown to represent the time step.

-292-

Examples:

StepFilter
{
 Condition : month = 10
 Value : 1

 Condition : default
 Value : 0
}

In the above example, the output would only include values from the month of October, because in any other month, the value
expression would be zero. The exact same effect can be achieved more concisely like so:

StepFilter{ Value : month=10 }

The value expression would be true in October, and false in all other months. Thus, values for all months except October are
filtered out.

StepFilter{ Value : flow233.567 > 10 }

In the above example, the filter is based on a simulated flow. All time steps when the flow in arc 233.567 is less than or equal
to 10 will be filtered out of the output display. Time steps when the flow is greater than 10 are displayed.

6.1.10 TRACE-FILTER SECTION IN THE ONEVAR INPUT FILE

The trace-filter section of the Onevar file is only used with position-analysis (PA) output. See Chapter 9 for more about PA.
The trace-filter section is optional, only for use when you want to:

 sort the display of PA traces by some criteria other than the values of the output being displayed

and/or

 display some of the PA traces but exclude others.

Syntax form (see section 4.7.0 part A for conventions):

:TRACEFILTER:

[table definition]

TraceNum{ [Trace-number list] }

The trace-filter section comes after the header section, before the table-definitions section. It begins with the keyword
:TRACEFILTER: after the end of the header section. The keyword :TABLES: marks the end of the trace-filter section and the
beginning of the table-definitions section (section 6.1.8).

The trace-filter section must contain a TraceNum field. [Trace-number list] identifies the particular traces from the sorted
order which you want to display in the output. The list is delimited by commas and dashes. A comma means and, and a dash
means through. For example, this TraceNum field:

TraceNum{ 7-10 , 12 , 16-20 }

calls for traces 7 through 10, trace 12, and traces 16 through 20. It is equivalent to this:

TraceNum{7,8,9,10,12,16,17,18,19,20}

Traces that are not in the list will not be displayed. In the above examples, traces 1-6, 11, 13-15, and all higher than 20 will
not be displayed. The keyword ALL can be used in place of [trace-number list] to indicate that none of traces will be left out

-293-

of the display.

The TraceNum field can be replaced with a TracePct field with the form:

TracePct{ [Trace-percentile list] }

The trace-filter section can not contain both TraceNum and TracePct. The [Trace-percentile list] has almost exactly the same
syntax as the [Trace-number list] . However, this list identifies the traces by their percentile rank (using numbers 0-100)
instead of the trace number. In order for the trace to have a percentile rank, it is implicit that the traces must be sorted
according to a [table definition] as described below. Suppose the position analysis consists of nine traces. If the TracePct
field looks like this:

TracePct{ 20, 70-90 }

Then the display will include only trace numbers 2, 7, 8, and 9, where the traces have been sorted by according to the variable
in [table definition] , with trace 1 (percentile 10) corresponding to the lowest value of the variable. If the values entered into
the TracePct field do not precisely correspond to percentile rank values from the position analysis, then the post-processor
program rounds to the nearest percentile rank values.

The trace-filter section can contain a single table definition (never more than one!). [Table definition] should be excluded if
you do not wish to select your traces from a sorted list. If [table definition] is applied, it must come before the TraceNum
field. [Table definition] has identical syntax to the table definition in the table-definitions section (section 6.1.9 part C).
Onevar’s evaluation of this table is distinct from the evaluation of the tables in the table-definitions section.

 The trace-filter table is always evaluated as though the :SORT: field contained PROBABILITY and the :STEP: field
contained WHOLERUN. This does not affect the evaluation of the tables in the tables-definition section; they are
still evaluated according to your :SORT: (section 6.1.7 part G) and :STEP: (section 6.1.7 part I) entries in the header
section..

 The trace-filter table is evaluated for all PA traces, while the tables in the table-definitions section are evaluated only
for those traces identified in the TraceNum field.

 The trace-filter table is not displayed in output. This means that the title and format fields are irrelevant. If you
wish, you may put a table identical to the trace-filter table in the table-definitions section, so that you can see what its
values are. However, remember that this output will be filtered according to the TraceNum field.

Having identified all of its components, we can now explain how the trace-filter section is evaluated:

 The trace-filter section is evaluated before the table-definitions section.

 Firstly, the trace-filter table is evaluated for all PA traces.

 Next, the trace-filter table is aggregated for a WHOLERUN step type, and it is sorted by its values. This results in a
sorted series with one value representing each trace.

 Next, the traces are selected according to the TraceNum field. Suppose the TraceNum field contained 1-5. Thus,
Onevar would select the five traces at the top of the sorted list. If no [table definition] was given, then no sorting
would be done. Onevar would simply select the first five traces.

 Finally, the tables of the table-definitions section are evaluated and displayed only for the selected traces.

-294-

:FILE: stages_1-10.txt
:DELIMITER: ,

:TRACEFILTER:

 Table 1
 { value : elevation120
 step : MIN
 }
 TraceNum{1-10}

:TABLES:

Table 1
{ title : OUTFLOW
 value : flow340.150
 format : 8.2
}

:END:

Here is an example of a Onevar input file using a trace filter.

This example tells Onevar to print 10 traces. The selected traces are the 10 with the lowest low points in elevation at
reservoir node number 120. The output is a time-series of flow in arc 340.150 for those 10 traces. If we wanted to present
the 10 traces with the highest low points in reservoir elevation, we could add the field:

options : descending

to the trace-filter table.

6.2.0 PLOT PROGRAM

Plot is the OASIS post-processor that presents data in graphical plots. The unit of output for Plot is the line. A single plot
can contain many lines. Each line represents the values of a formula.

Plot runs much like Onevar (section 6.1.0). It reads formula information from a Onevar input file (section 6.1.3), and gets
information about formatting the plot from the plot-definition file (section 6.2.3). When it has finished running, it creates a
window, in which your plot is displayed. You can modify and print the plot through a graphical interface (section 6.2.4).
The plot window remains open until you choose to close it.

While Onevar can only process data for one run at a time, Plot can process data from one run or from multiple runs.

 When it is using only one run, Plot can present many different variables from that one run on a single plot.

 When it is using multiple runs, Plot presents the results for one variable from up to six different runs. It does not
present multiple variables from multiple runs.

Plot can present multiple plots with one execution. Each of these plots has its own format and data. The multiple plots are
presented as multiple documents (each with its own window) inside one instance of the plot program. Each document
window can be expanded, shrunk, hidden, closed, moved around with the mouse, or maximized to take up the entire display.
Any subset of the plots can be visible in the display at one time.

When you do multiple plots, each plot contains data from the same set of model runs. If you want to see plots that contain a
different set of model runs, you must change your plot pointer file (section 6.2.1) and run Plot again.

-295-

The program is contained in the file Plot.exe. This file must be found in the same directory as model.exe. Plot will need to be
able to read the following files when it runs:

 The model pointer file (section 4.3.0), unless the command line argument DIR is used (section 4.1.0), or unless run
directories are named in the Plot pointer file (section 6.2.1). The model pointer file must be in the same directory as
Plot.exe.

 The Plot pointer file (section 6.2.1). The Plot pointer file must be in the same directory as Plot.exe.

 The control file in the directory named by the model pointer file (section 4.4.0). The file model.cf is opened unless
another file name is specified with the command line argument CF (section 4.1.0).

The Plot pointer file (section 6.2.1) can name more than one run directory. If it does, Plot will need to be able to
read the control file for each.

 All of the model input files named in the control file(s), including the static databases (section 4.5.0) and the OCL
file (section 4.7.0).

 The model time-series output databases (section 5.6.0) named in the control file(s).

 The plot-definition file (section 6.2.3), named by the Plot pointer file.

 The Onevar input file (section 6.1.3) named by the plot-definition file’s File ID table (section 6.2.3 part A).

Plot does not initialize any external modules, or have access to input that is specific to a module.

When the command-line option NoRunInput (section 4.1.0) is applied, Plot can run without reading a control file, model input
files, and the model time-series output database. This is called pre-processor mode. The behavior of Plot in pre-processor
mode is the same as Onevar. See section 6.1.6 for more information about this special use of Plot.

Plot is run by the OASIS GUI when you click on PLOTS (section 3.6.4 part B). If the GUI is configured properly, you do not
need to worry about the pointer files, because the GUI manages them for you.

-296-

 | 3 // number of graphs to plot
 | plotdefs\delivery_1.mdb // name of plot definition file
 | plotdefs\storage.mdb // name of plot definition file
 | plotdefs\Jeffs_plot.mdb // name of plot definition file

 | 2 // number of runs to plot
 | runs\base_run // run directory of the first run
 | runs\run22 // run directory of the second run

Example of a Plot pointer file

6.2.1 PLOT POINTER FILE

The Plot pointer file is an ASCII text file. By default, the pointer file is named plot.cf, and it must be found in the same
directory as Plot.exe. This default name and path can be overridden with the command-line parameter PLOTPF (section
4.1.0). The purpose of this file is to tell Plot the name and path of the plot-definition file or files. It may also contain the
names of run directories to use in the plot. It must contain the names of run directories if you are plotting multiple runs on
one plot.

When you use the OASIS GUI, the plot pointer file is automatically handled for you, so you do not need to view or edit it.

The pointer file contains the following information, in order:

 The number of graphs to plot, preceded by a pipe character (|).

 The names of the plot-definition files which define each graph. The number of plot definition files must match the
number of graphs indicated above. Each file name is preceded by a pipe. The file path can be absolute or relative to
Plot.exe.

 The number of runs to be plotted, preceded by a pipe. Each graph will plot information from each of the runs. If
you enter zero, one run is plotted, and the Plot program uses directry.nam (section 4.3.0) or the command line
(section 4.1.0) to get the name of the run.

 The pathnames of the run directories which contain each run. The number of run directories must match the number
of runs indicated above. Each pathname is preceded by a pipe. The path can be absolute or relative to Plot.exe.

Here is an example text from a Plot pointer file. This file directs Plot to create three plots with data from two run directories.

-297-

6.2.2 ONEVAR INPUT FILE

Plot reads a Onevar input file to get the formulas of the plot lines, while the formatting information is given in the plot
definition file. Thus, writing a formula for a line on the plot is just like writing a formula for a Onevar table. Furthermore,
you can use the same Onevar file as input to both Plot and Onevar, so that you can see the same data in a plot form and a table
form. The general details of the Onevar input file are given in sections 6.1.3 - 6.1.9, while this section discusses the specific
way the Plot treats the Onevar input file.

Plot gets the name of the Onevar input file to use from the File ID table (section 6.2.3 part A)

Plot ignores any information in the Onevar input file that tells how to format a text table. For example, the :FORMAT: field
in the header section, and the format and title fields in the table definition are meaningless to Plot. You do not have to
remove this information in order for Plot to read the file. This information may be useful if you are going to run Onevar using
the same file.

Rather than explain which parts of the Onevar input file are ignored by Plot, we will point out those that it actually uses. Plot
uses the following fields from the header section (section 6.1.7):

 :SORT: field Can specify a probability-of-exceedence or a time-series plot.

 :STEP: field Can plot the data at different time steps than the simulation time steps.

 :TIME: field Can specify limits of the time range. This is only used for a probability plot. It is ignored
for a time-series plot. Change the x-axis range (section 6.2.3 part D) to restrict the time
interval that is displayed for a time-series plot.

 :STATDB: field Can include data from an OCL static database if this was not done from the OCL file.

 :TIMEDB: field Can include data from an OCL time-series database.

 :PREPDB: field Can include data from a pre-processor database.

Plot heeds the following fields from the table definition (section 6.1.9 part C):

 value field Always required, because it gives the formula of the line.

 legend field Gives a string of text to be displayed in the legend box of the plot. The entry in this field
overrides the entry in the legend text field of the Lines table (section 6.2.3 part B). If you
omit this field, Plot uses the information from the Lines table.

 step field Required if the :STEP: field was applied in the header.

 ascending or descending options in the options field

Can specify the sort order if sorting the data for a probability-of-exceedence plot. Other
options in the options field are ignored.

 NoPlot option in the options field

Means that Plot will not use the table to create a line on the plot.

Plot reads the StepFilter command (section 6.1.9 part E) and filters out time steps accordingly.

Each table definition in the Onevar input file is used to define a line for Plot, not counting those tables which use the NoPlot
option. If there are more tables than the number of lines defined in the Lines table (section 6.2.3 part B), then the extra tables
will be ignored. If there are fewer tables in the Onevar input file than the number of lines defined in the Lines table, then the
number of tables in the Onevar input file is the number of lines plotted. If multiple runs are being plotted, then only the very
first table definition is used, and all others are ignored.

Plot can also be given a Onevar input file that contains a trace-filter section (section 6.1.10). This allows you to plot

-298-

individual traces of a position analysis (PA), and select only particular traces to plot. Using a trace-filter section is the only
way to produce time-series plots of a PA. Note that you cannot display multiple runs on a trace-filtered plot. On a single
trace-filter plot, only one variable can be displayed at a time, so only the first table in the table-definitions section is applied –
subsequent tables are ignored. Furthermore, since the number of traces to plot can be very large, Plot does not require that
you make a record in the Lines table (section 6.2.3 part B) for every trace. If the number of traces selected exceeds the
records in the Lines table, then Plot automatically reuses the records from the table as often as necessary.

-299-

Example

6.2.3 PLOT-DEFINITION FILE

The plot-definition file contains formatting information for the appearance of the plot, just as the Onevar input file contains
formatting information for the appearance of Onevar tables. Because of the large amount of information, the plot-definition
file is an MS-Access database. Refer to section 4.5.0 for some general information about MS-Access databases.

Unlike the Onevar input file, the plot-definition file contains no information about how to generate the data. For that, the
plot-definition file refers to a Onevar input file (section 6.2.2). The name of the Onevar file is given in the File ID table of the
database (section 6.2.3 part A).

Note that it is possible to make most changes through the plot program’s graphical user interface and then save them to file
(section 6.2.4). Therefore, most users will not need to edit the plot-definition file through the MS Access interface.

A. Table File ID

This table contains the name of the Onevar input file that contains formulas for the lines on the plot. This table contains only
one record.

The fields of this table are:

Field Name Type Size Description

Onevar file Text 64 The name and path of the Onevar input file from which Plot is to retrieve
the formulas for the lines. The path can be absolute or relative to
Plot.exe.

For information about the Onevar input file, see 6.2.2.

-300-

Example

B. Table Lines

This table describes the appearance of the lines on the plot. There is a record for each line. If the plot comes from a single
model run, then Plot determines the number of lines to plot as the lesser of the number of records in this table or the number
of Onevar tables. If the plot comes from multiple model runs, then Plot determines the number of lines to plot as the lesser of
the number of records in this table or the number of runs to plot.

The fields of this table are:

The fields of this table are:

Field Name Type Size Description

axis Text 5 Tells Plot which axis this line is associated with. Choices are LEFT or
RIGHT. Plot will not draw an axis unless at least one line is associated
with the axis. If there are multiple runs being plotted, then all lines are
associated with the same axis as the first line.

legend text Text 50 This text will be used to label the line in the legend. If the legend field is
used in the Onevar file (see section 6.1.9 part C), then the entry in this
field is overridden.

Type Text 18 Tells Plot how whether to use an ordinary line or other graphing
convention. Choices are:

 LINE A line connects each data point

 LINE+MARK A line connects each data point and a marker
appears at each data point.

 MARK A marker appears at each data point, but there is
no line connecting data points.

 2DBAR Each data point is represented by a vertical bar
from zero to the y-value.

 3DBAR Each data point is represented by a vertical bar
from zero to the y-value. The vertical bar has a 3-
D appearance.

style Text 20 Tells Plot the style of the line. See section 6.2.3 part H for choices. This
field is ignored if the Type field is not LINE or LINE+MARK.

width Number byte The number of pixels of the width of the line (1 or more). This field is
ignored if the Type field is not LINE or LINE+MARK.

color Text 20 If the Type field is LINE, LINE+MARK, or MARK, then this field tells the
color of the line and/or markers. If the Type field is 2DBAR or 3DBAR
then this field tells the color of borders that are drawn around the bar.
See section 6.2.3 part G for color choices.

-301-

Step Yes/No This field is ignored unless the Type field is LINE or LINE+MARK. If
this field is checked, then the line is drawn in stair-step fashion: flat
between data points. If the field is not checked, then the line is drawn
directly between data points.

Fill-Border Yes/No If the Type field is LINE then an entry of YES means that the area
between the line and the x-axis is filled in. If the Type field is
LINE+MARK or MARK then an entry of YES means that a drop line is
drawn between the marker and the x-axis. If the Type field is 2DBAR or
3DBAR then an entry of YES means that a border line is drawn around the
vertical bars. An entry of NO means that these respective features are not
drawn on the plot.

Mark Shape Number byte This field is ignored unless the Type field is MARK or LINE+MARK.
Tells Plot the type of marker to use, according to these numeric codes:

 1 X

 2 UP TRIANGLE

 3 DOWN TRIANGLE

 4 BOX

 5 PLUS

 6 ASTERISK

 7 DIAMOND

 8 CIRCLE

 9 DOT

Mark Size Number byte This field is ignored unless the Type field is MARK or LINE+MARK.

Tells Plot the size of the marker.

Mark Full Yes/No This field is ignored unless the Type field is MARK or LINE+MARK. If

YES then the marker is drawn with its center filled. If NO then the

marker is drawn with its center empty.

Bar Pos Number byte This field is ignored unless the Type field is 2DBAR or 3DBAR. Tells

Plot how to offset the vertical bar in relation to the x-value. If more than

one series is being plotted, using different offsets can enhance the

visibility of the bars. The entry can be one of the following numeric

codes:

 1 Left

 2 Right

 3 Middle

Bar Width Number single This field is ignored unless the Type field is 2DBAR or 3DBAR. Tells

Plot the width of the vertical bar in units of the x-axis.

Bar Color Text 20 This field is ignored unless the Type field is 2DBAR or 3DBAR. Tells

Plot the color of the vertical bar. See section 6.2.3 part G for color

choices.

-302-

Example

C. Table Areas

Describes the format of four rectangular “area” objects on the plot: the legend, plot frame, background, and scroll bar. The

identities of the records (rows) are fixed. There are four records, one for each of the areas.

The fields of this table are:

Field Name Type Size Description

Object Text 20 Do not edit this field. It is there for your convenience to identify the fixed

records. Plot does not read this field.

left Number Single See notes below.

right Number Single See notes below.

top Number Single See notes below.

bottom Number Single See notes below.

color Text 20 The color of that fills the area. See section 6.2.3 part G for choices.

border color Text 20 The color of the border of the area. See section 6.2.3 part G for choices.

orientation Text 12 For the legend area, choices are vertical or horizontal. For the scroll bar,

enter NONE to suppress the scroll bar. For all other records, this field is

ignored.

The fixed records of this table are:

 Legend This is a box containing a list of labels for each line on the plot. The list can be vertical (listing

down) or horizontal (listing across), as indicated in the orientation field.

 Plot Area This is the area bounded by the plot axes. The orientation field is ignored for this record.

 Background This is the background of the entire image. The left, right, top, bottom, and orientation fields are

ignored for this record.

 Scroll Bar This is a bar with a slider. When the plot is displayed, you can move the slider with the mouse,

scrolling the visible range of the x-axis. To make a plot without a scroll bar, enter NONE in the

orientation field. The color and border color fields do not have any effect for the scroll bar.

-303-

Example

Notes:

 left, right, top, and bottom fields

These are the coordinates of the left, right, top, and bottom corners of the area, as a fraction (0-1) of the total area in

the window. For example, 0.5 is the exact center of the window. The coordinates (0,0) are the left, top corner of the

window. All four of these fields are ignored for the background record.

D. Table Axes

This table describes the format of the axis lines on the plot. The identities of the records (rows) are fixed.

The fields of this table are:

Field Name Type Size Description

AXIS Text 10 Do not edit this field. It is there for your convenience to identify the fixed

records. Plot does not read this field.

TickLabel Text 15 Specifies how the x-axis will be labeled. This field is ignored for the y-axes. If

you enter DECIMAL, then the x-axis is measured in years and increments

smaller than one year are expressed as a decimal fraction of a year. If you enter

anything else, then the x-axis is measured in simulation or post-processor time

steps, and the entry is used as a formula for creating the tick labels. See notes

below.

M in Number Single The minimum of the axis. Enter this number unscaled. Plot divides it by the

scale factor. The value is ignored if YES is entered in the AutoRange field.

Max Number Single The maximum of the axis. Enter this number unscaled. Plot divides it by the

scale factor. The value is ignored if YES is entered in the AutoRange field.

AutoRange Text 4 Tells Plot whether to choose a minimum and maximum for axis. If NO , then

Plot applies the values you enter in the Min and Max fields. If YES, then Plot

automatically chooses a minimum and maximum for the axis that fits all of the

data.

Intercept Number Single The point on this axis where the x-axis crosses. This field is ignored for the x-

axis. Enter this number unscaled. Plot will divide it by the scale factor.

tick dist Number Single The distance between major tick marks on this axis. Enter this number

unscaled. Plot will divide it by the scale factor.

num minor Number Byte The number of minor tick marks between each major tick mark on the axis.

-304-

Scale Factor Number Single All values on this axis will be divided by the scale factor. This field is ignored

for the x-axis.

style Text 20 Tells Plot the style of the axis line. See section 6.2.3 part H for choices.

width Number Byte The number of pixels of the width of the axis line (1 or more).

color Text 20 The color of the axis line. See section 6.2.3 part G for choices.

The fixed records of this table are:

 X The x-axis is always the date or the probability of exceedence. Therefore, Plot does not read a

scale factor for this record. It also does not read an entry in the Intercept field.

 Y-left The y-left axis is only used if there is at least one line associated with the y-left axis by the axis

field of the Lines table (section 6.2.3 part B). This axis appears on the left side of the plot, and it

can have completely different scaling than the y-right axis.

 Y-right The y-right axis is only used if there is at least one line associated with the y-right axis by the axis

field of the Lines table (section 6.2.3 part B). This axis appears on the right side of the plot, and it

can have completely different scaling than the y-left axis.

Notes:

 TickLabel field

If the entry in this field is anything other than DECIMAL, then Plot will use absolute period numbers for the x-axis

values, and the entry is used as a format specification for the tick labels.

Absolute period numbers are assigned to the time steps by starting at 1 for the first step and incrementing by one for

every time step thereafter, without ever resetting. Plot reports the x-values as the post-processor time steps, specified

by the :STEP: field (section 6.1.7 part I). If no special post-processor steps were specified by the :STEP: field, then

the post-processor time steps are equal to the simulation time steps.

The format specifications are the same as those used in the Label field in the Steps table. See section 4.5.2 part D for

a thorough description of the codes used to create a label. Remember that the codes are case sensitive. One

additional code is available for Plot that is not available in the Steps table.

Code Description

%o The time step label used by OASIS or the post processor, without an appended year number.

The %o code calls for the very same labels as you see in a Onevar output. On the plot, you will probably want to see

the year in the tick labels, so %o/%y is a good choice for the TickLabel field.

When choosing between the decimal-year-based x-axis and the time-step-based x-axis, consider the following facts.

 We usually associate a date with a month and day number, so decimal fractions of a year may be difficult to

interpret.

-305-

Example

 When measuring the x-axis in time steps, major tick marks cannot fall between time steps.

 By measuring the x-axis in years, the minimum, maximum, and tick distance of the axis are independent of

the time steps. This enables you to overlap two runs on the same plot that used different time-step sizes or

time steps that were offset from each other. However, remember that the x-values on the plot are absolute

period numbers, not date coordinates. The x-axis labels which Plot displays come from the first of the

multiple runs, so if subsequent runs have non-overlapping time steps then the x-axis labels might not be

appropriate. If you pass the command line argument WarnXAxis to Plot, it will display a warning message

if there is any potential for mislabeling (see section 4.1.0).

 By measuring the x-axis in time steps, the minimum and maximum of the axis do not have to change when

the simulation time range changes. Thus, time-step-based x-values are a good choice for position analysis

(Chapter 9)

 When the x-axis is measured in time steps, every time step is represented by an equal distance on the axis.

This might be considered misleading if the time steps have varying sizes. When the x-axis is measured in

years, distances on the axis are always proportional to the length of time.

E. Table Labels

Provides information for most of the text information that appears in the plot window, including the title, axes titles, and

format of the axis tick labels (However, the labels for individual lines in the legend area are given in the Lines table [section

6.2.3 part B]). The identities of the records (rows) are fixed.

The fields of this table are:

Field Name Type Size Description

Label type Text 20 Do not edit this field. It is there for your convenience to identify the fixed

records. Plot does not read this field.

-306-

Text Text 80 The text that Plot will display in the image. You may choose not to use a label by

leaving this field blank. Plot recognizes and replaces OCL substitute names in

this field (section 4.7.1 part I). This field is ignored for the x-tick marks, y-left

tick marks, y-right tick marks, and legend text records.

font Text 50 The font of the label. See section 6.2.3 part I for choices.

text style Number Byte The text style for the label. See section 6.2.3 part J for choices.

text size Number Byte The size of the label text.

text color Text 20 The color of the label text. See section 6.2.3 part G for choices.

x Number Single See notes below.

y Number Single See notes below.

format Text 3 Numeric format type used only for the x-tick marks, y-left tick marks, and y-right

tick marks records. For all other records, it is ignored. The choices are:

 DEC Regular decimal notation; i.e. 5678.34

 SCI Scientific notation; i.e. 5.67834x103

 ENG Engineering notation; i.e. 5.67334K

prec Number Byte The number of digits after the decimal point. This field is used only for the x-tick

marks, y-left tick marks, and y-right tick marks records. For all other records, it is

ignored. If you enter a negative number, Plot will automatically choose a

precision level.

The fixed records of this table are:

 Graph Title This is the title that appears at the top of the graph.

 Graph Subtitle This is an optional label that usually appears below the graph title. However, you can

locate it wherever you like. The x and y fields must be used for this record.

 X-axis Title This is a label for the x-axis. It is printed below the x-axis.

 Y-left-axis Title This is a label for the y-left-axis. It is printed to the left of the y-left-axis, rotated 90

counterclockwise.

 Y-right-axis Title This is a label for the y-right-axis. It is printed to the right of the y-right-axis, rotated

90 clockwise.

 X-tick Marks These are the numbers that label the tick marks on the x-axis. The text field is ignored for

this record — you only provide formatting information for the tick marks. The ticks

appear below the axis.

 Y-left Tick Marks These are the numbers that label the tick marks on the y-left-axis. The text field is

-307-

Example

ignored for this record — you only provide formatting information for the tick marks.

The ticks appear to the left of the axis.

 Y-right Tick Marks These are the numbers that label the tick marks on the y-right-axis. The text field is

ignored for this record — you only provide formatting information for the tick marks.

The ticks appear to the right of the axis.

 Legend Title This is an optional title that usually appears at the top of the legend box. However, you

can locate it wherever you like. The x and y fields must be used for this record.

 Legend Text This is the formatting for the labels that appear in the legend. The text field is ignored for

this record — you only provide formatting information for the legend labels.

Furthermore, the text color field is ignored, since each legend label is automatically the

same color as the corresponding plot line.

 Optional [x] You may have up to nine extra labels. You can locate them wherever you like, so the x

and y fields must be used for these records. These last nine records of the table are

completely optional; you may omit any or all of them if they are unneeded.

Notes:

 x and y fields

These fields provide the x and y coordinates of the center of the label, as a fraction (0-1) of the total area in the

window. For example, 0.5 is right in the center of the window. The coordinates (0,0) are the left, top corner of the

window. These two fields are used only for the legend title, the graph subtitle, and the optional labels. All other

labels have a position that is determined automatically, so the entry in this field is ignored.

F. Table Grid

Describes the format of grid lines that may cross the plot area. You may use this table to suppress grid lines. The identities of

the records (rows) are fixed. There are three records, one for each of the axes.

The fields of this table are:

Field Name Type Size Description

AXIS Text 20 Do not edit this field. It is there for your convenience to identify the fixed

records. Plot does not read this field.

-308-

grid type Number Byte A code telling Plot the type of grid lines to display.

 0 No grid lines

 1 Grid lines on major tick marks.

 2 Grid lines on minor tick marks.

 3 Grid lines on both major and minor ticks.

style Text 20 Tells Plot the style of the grid lines. See section 6.2.3 part H for choices.

width Number byte The number of pixels of the width of the grid lines (1 or more).

color Text 20 The color of the grid lines. See section 6.2.3 part G for choices.

The fixed records of this table are:

 x-grid Grid lines that cross the x-axis.

 y-left-grid Grid lines that cross the y-axes, associated with the tick marks on the y-left-axis. Even if you are

using both y-axes, you probably only want grid lines to be linked to one of the y-axes.

 y-right-grid Grid lines that cross the y-axes, associated with the tick marks on the y-right-axis. Even if you are

using both y-axes, you probably only want grid lines to be linked to one of the y-axes.

G. Quinn-Curtis color choices

Wherever color input is needed in the plot-definition file, you can enter any of the following named colors:

BLACK

BLUE

GREEN

CYAN

RED

MAGENTA

BROWN

LIGHTGRAY

GRAY

LIGHTBLUE

LIGHTGREEN

LIGHTCYAN

LIGHTRED

LIGHTMAGENTA

YELLOW

WHITE

PALEGREEN

MEDGRAY

OFFWHITE.

You can also enter TRANSPARENT for some fields.

Another option is to enter a number between 0-16777215 to use any color on the full RGB palette. This option is not

available for text. Note that such numbers are entered as text. Due to the difficulty of interpreting the numerical color codes,

we suggest you rely on the plot program’s graphical user interface to select such colors.

-309-

H. Line-style choices

Wherever line-style input is needed in the plot-definition file, you can enter any of the following:

SOLID

DASH

DOT

DASHDOT

DASHDOTDOT

NONE

INSIDEFRAME

I. Font choices

The font choices will depend upon what fonts are installed on your computer. We recommend that you only use the most

common fonts to ensure that the files are portable from computer to computer. Three mainstay fonts are Arial, Times New

Roman, and Courier New. To see the other choices, run Plot and double-click on any text. The dialog box that appears has a

button labeled Text Parameters. Click it, and another dialog box appears. You can see the other font choices in the pull-

down menu labeled Font.

Note that the capitalization is important when entering a font name (unlike for almost all other input). The initial letters

should be capitalized, and the others should be un-capitalized. Problems with capitalization of the font name are avoided if

you work exclusively through the dialog boxes in the Plot interface.

J. Text-style choices

The text style can be plain, bold, italic, underlined, or a combination. You enter the text style as a number code. In order to

compute the number code, add together the codes for the styles that you want:

Style Number code

Plain 0

bold 1

italic 2

underline 4

For example, if you want the text bold and underlined, enter 5.

6.2.4 PLOT-WINDOW INTERFACE

After you have run Plot, the window remains open until you close it. As long as it is open, you can modify the display and

save changes if you wish. All plot features can be edited by selecting menu options. Most plot features can also be edited by

double-clicking the item.

-310-

When data is saved, it is stored in a plot-definition file (section 6.2.3). Because almost all features of the plot can be modified

through the interface, most users should not need to edit the plot-definition file using MS Access.

To save changes to the plot layout:

Click: File > Save (To save changes in the same file)

File > Save As (To save changes in a new or different file)

To save an image file of the plot:

Click: File > Save Metafile Image

Or: File > Save Bitmap Image

To copy an image of the plot to the Windows clipboard for pasting into a word processor, slideshow, or other software:
Click: File > Copy to Clipboard

To select the plot window you want to see from among all the plots open in the current instance of the program: Click:
Window and then select the plot you want by the name of the plot-definition (*.mdb) file. Alternatively, press CTRL-TAB to
toggle through each plot window.

To arrange the plot windows in standard patterns: Click: Window and then select Tile Horizontally, Tile Vertically, or
Cascade.

To see which model run or runs were used to generate the plot: Click: Info > List Model Runs. A popup dialog box
appears showing the complete path of the run folder of each model run that was used to generate the plot.

To modify the appearance of a data series on the plot: Click: Edit and then select the data series (listed by run name or
legend text) from the list at the bottom of the menu. A dialog box appears showing the editable characteristics of the
appearance of the data series. Alternatively, you can call this dialog box by double-clicking on the line, markers, or vertical
bars for the data series right in the plot. However, it is sometimes difficult to click the mouse pointer on the exact spot, so it
may be more reliable to use the menu. To modify the legend text for a data series, see instructions below for modifying the
legend.

To modify the x- or y-axes:

Click: Edit > X Axis

Edit > Y Axis Left

or: Edit > Y Axis Right

and then choose whether to edit the axis, the axis tick labels, or the axis title. Alternatively, you can double click on the axis
(the line itself) to edit the axis range and appearance of the line, on the tick labels to edit the appearance of the tick labels, or
on the axis title to edit the appearance of the axis title.

To identify a data series with a different y-axis (either left or right): you must use MS Access to edit the Axis field of the
Lines table of the plot-definition file, and then re-run the plot program. This feature can not be modified through the Plot
interface.

-311-

To modify the grid lines:

Click: Edit > X Axis (For vertical grid lines)

Edit > Y Axis Left (For horizontal grid lines)

or: Edit > Y Axis Right (For horizontal grid lines)

Then, in the dialog box, click the Style button in the Grids box.

To modify the background colors: Click: Edit > Graph.

To modify the size and placement of the plot frame within the window: Click: Edit > Graph. The locations of the
boundaries of the plot frame are given as percentages of the size of the plot window, with the left top corner as (0,0).

To modify the text or appearance of the plot title, plot subtitle, or legend title: Click: Edit and select either Title,
Subtitle, or Legend Title. Alternatively, you can double-click on the text object itself.

To add an optional (user-defined) text box: Click: Edit > Add Text and fill out the dialog box. Note that the coordinates
of the new text box are presented as fractions of the size of the plot window, with the left top corner as (0,0).

To modify the text, location, or appearance an optional (user-defined) text box: Double-click on the text itself and fill out
the dialog box. Note that the coordinates of the text box are presented as fractions of the size of the plot window, with the left
top corner as (0,0).

To delete an optional (user-defined) text box: Click on the text itself and then press the Delete key.

To modify the legend: Click: Edit > Legend. The locations of the four boundaries of the legend are given as percentages
of the size of the plot window, with the left top corner as (0,0).

To modify the scroll bar or to add or remove the scroll bar: Click: Edit > Scroll Bar. The locations of the four
boundaries of the scroll bar are given as percentages of the size of the plot window, with the left top corner as (0,0).

To associate the plot with a different Onevar-input file: Click: Edit > Onevar File. We recommend that the Onevar file
be identified with a path relative to the home folder, although you can also enter an absolute path.

To select a color in any of the dialog boxes: Note that the currently selected color is shown in a small rectangle next to
the selection box labeled Color. You may select any of the named colors in the selection box labeled Color. To select any
of the unnamed colors, click on Custom Color in the list. Note that Custom Color is not available for all plot features (for
example, it is available for plot lines but not for any text objects). If Custom Color is available, it is the first item in the
selection box labeled Color. When you click on Custom Color, another dialog box opens which allows you to select any color
from the full RGB spectrum. If Custom Color is already selected in the selection box, then you can click on Custom Color
again to select a different custom color. See 6.2.3 part G for a list of colors available to Plot.

-312-

CHAPTER 7

REFERENCE: LINEAR PROGRAM

7.0.0 INTRODUCTION

This chapter is a reference for those who need a better understanding of how OASIS uses linear programming (LP). It will be

especially useful if you have to debug LP problems. However, it is not expected that every OASIS user needs to know the

material presented in this chapter.

The linear program (LP) is the ultimate expression of the rules for routing water in an OASIS model. Generally, at least one

LP is created and solved in each time step of simulation (it is possible to solve no LP if you are doing MPO, see section

2.2.7). Solving the LP determines the values of the decision variables. See section 2.2.0 for an introduction to concepts in

OASIS routing.

To solve the LP, OASIS uses the software package XA, by Sunset Software. XA is proprietary, so when HydroLogics

provides a client with a copy of OASIS, a license to use XA is included in the deal. XA runs from a dynamic-link library

(DLL) that is called by OASIS. When OASIS runs, you can see the XA window appear on the screen, containing copyright

notices and contact information for Sunset Software.

OASIS actually takes advantage of XA’s ability to solve mixed-integer linear programs (MILPs), though we always refer to it

simply as LP (Not every OASIS model needs to use integers). MILP means that you can have integer variables that can only

have integer value. For example, 2 and 3 might be legal values, but not 2.21. In order to solve the MILP, XA actually solves

the problem in two distinct steps. First, it solves the problem without restricting any variables to integer value. Secondly, it

modifies the result by forcing the integer variables to take on integer values. Knowing this may help you understand errors

reported in the LP output (section 5.5.0). You can create integer variables with the udef command (section 2.5.1 part A).

7.1.0 DEFINITIONS

The following terms will be useful to the OASIS user who needs to understand the OASIS LP.

 Decision variables. The unknown variables whose values are determined by the LP solution.

 Constraints. An equality or inequality expression that the LP solution can not violate. For LP, the constraints must

be linear expressions of the decision variables.

 Bounds. Every decision variable can have an upper bound and a lower bound. These are the maximum and

minimum values that the LP solution can assign to the variable. For the OASIS user, bounds have the same practical

effect as constraints, so they are referred to as a type of constraint throughout this manual.

 Unbounded. An unbounded decision variable has no bound value. An unbounded constraint has no equality or

inequality operator linking the right-hand side to the left-hand side. Thus, the constraint is completely moot. This

occurs in the OASIS LP because the constraint is holding a place, and it may become bounded at a later step.

 Feasible solution. An LP solution where all of the constraints and bounds are obeyed.

-313-

 Infeasible LP. An LP where not all of the constraints and bounds can be simultaneously obeyed. A simple example

would be:

A > 5

A = B

B < 0

 Objective function. A linear combination of decision variables that the LP solution optimizes. For OASIS, the LP

solution maximizes the objective function. Every operating goal is represented by a term in the objective function.

 Optimal solution. The feasible solution with the highest possible value of the objective function.

7.2.0 DECISION VARIABLES

Every decision variable name follows a coding system, so that you can identify the variable. The syntax of the decision

variable names is distinct from the syntax of OCL variables. For example, the udef named NetDeepPercolation in OCL may

be represented by the variable UDEF023 in the LP. The LP variable names are compact for efficiency, while OCL variable

names are intended to be highly readable. However, most of the decision variables can be referenced in OCL.

In the generalized forms below, text in bold is literally as it appears in the LP. Italic text in [brackets] describes what you

would place in that position.

A. QT variable

Code QT[bbb][eee]

Definition The flow in the arc that flows from node [bbb] to node [eee] . The T is for total, to distinguish this

variable from the QA and QB variables.

Example QT100203 – The flow in the arc that goes from node 100 to node 203.

Upper bound Maximum flow (section 2.4.0 part B) if any. Otherwise unbounded.

Lower bound Maximum reverse flow (section 2.4.0 part C) if any. Otherwise zero.

Obj. Weight Weight: Arc table (section 4.5.7 part A)

OCL variable dFlow (section 4.7.4)

-314-

B. QA variable

Code QA[bbb][eee]

Definition The first segment of flow in the arc that flows from node [bbb] to node [eee] . This segment is below

the lower bound and the minimum (target) flow (section 2.4.0 part B). This variable is only included

if the arc has been assigned a minimum (target) flow.

Example QA100203 – The first segment of the flow in the arc that goes from node 100 to node

203.

Upper bound Minimum (target) flow (section 2.4.0 part B).

Lower bound Unbounded.

Obj. Weight Weight: Arc table (section 4.5.7 part A)

OCL variable None

C. QB variable

Code QB[bbb][eee]

Definition The second segment of flow in the arc that flows from node [bbb] to node [eee] . This segment is

above the minimum (target) flow (section 2.4.0 part B). This variable is only included if the arc has

been assigned a minimum (target) flow.

Example QB100203 – The second segment of the flow in the arc that goes from node 100 to node

203.

Upper bound unbounded

Lower bound Zero

Obj. Weight Weight: Arc table (section 4.5.7 part A)

OCL variable None

-315-

D. STO variable

Code STO[nnn]

Definition The storage in reservoir node [nnn] . This is the total storage.

Example STO203 – The storage in reservoir node 203.

Upper bound Maximum storage at node [nnn] (section 2.4.0 part H).

Lower bound Zero

Obj. Weight Weight: Storage table (section 4.5.7 part B)

OCL variable dStorage (section 4.7.4)

E. STA variable

Code STA[nnn]

Definition The storage in zone A of reservoir node [nnn] . This variable is not included for single-zone reservoir

nodes. See section 2.4.0 part H.

Example STA455 – The storage in zone A reservoir node 455.

Upper bound Dead storage at node [nnn] (section 2.4.0 part H).

Lower bound Zero.

Obj. Weight Weight: Storage table (section 4.5.7 part B)

OCL variable dStorA (section 4.7.4)

-316-

F. STB variable

Code STB[nnn]

Definition The storage in zone B of reservoir node [nnn] . This variable is not included for single-zone reservoir

nodes. See section 2.4.0 part H.

Example STB455 – The storage in zone B reservoir node 455.

Upper bound Lower rule minus dead storage at node [nnn] (section 2.4.0 part H).

Lower bound Zero.

Obj. Weight Weight: Storage table (section 4.5.7 part B)

OCL variable dStorB (section 4.7.4)

G. STC variable

Code STC[nnn]

Definition The storage in zone C of reservoir node [nnn] . This variable is not included for single-zone reservoir

nodes. See section 2.4.0 part H.

Example STC455 – The storage in zone C reservoir node 455.

Upper bound Upper rule minus lower rule at node [nnn] (section 2.4.0 part H).

Lower bound Zero

Obj. Weight Weight: Storage table (section 4.5.7 part B)

OCL variable dStorC (section 4.7.4)

-317-

H. STD variable

Code STD[nnn]

Definition The storage in zone D of reservoir node [nnn] . This variable is not included for single-zone reservoir

nodes. See section 2.4.0 part H.

Example STD455 – The storage in zone D reservoir node 455.

Upper bound Maximum storage minus upper rule at node [nnn] (section 2.4.0 part H).

Lower bound Zero

Obj. Weight Weight: Storage table (section 4.5.7 part B)

OCL variable dStorD (section 4.7.4)

I. DEL variable

Code DEL[nnn]

Definition The delivery to demand node [nnn] . See section 2.4.0 part D.

Example DEL022 – The delivery to demand node 22.

Upper bound Demand at node [nnn] (section 2.4.0 part D).

Lower bound Zero

Obj. Weight Weight: Demand table (section 4.5.7 part C)

OCL variable dDelivery (section 4.7.4)

-318-

J. UDEF variable

Code UDEF[xxx]

Definition OCL User-defined decision variable number [xxx] . The number [xxx] is automatically assigned by

OASIS. You can find what the udef numbers are by looking in the summary of udefs in the OCL

output (section 5.3.1).

Example UDEF003 – Udef number 3.

Upper bound Given in the udef command (section 4.7.2 part B).

Lower bound Given in the udef command (section 4.7.2 part B).

Obj. Weight None, except variables used in the minimax command receive a weight from the penalty field of the

minimax command (section 4.7.2 part H).

OCL variable d[udef name] (section 4.7.4)

K. POBJ variable

Code POBJ[xx]

Definition The priority objective for priority level number [xx] . See section 2.2.6 for an introduction to priority

levels. See section 7.3.0 part A for explanation of the use of this variable.

Example POBJ02 – Objective function for priority level number 2.

Upper bound Unbounded

Lower bound Before priority level [xx] has been solved it is unbounded. After priority level [xx] has been solved,

the lower bound is the solved value of POBJ[xx] . See section 4.7.2 part I for more information on the

solve command. If the cancel command (section 4.7.2 part J) is evaluated for priority level [xx] , then

the lower bound is removed so that the variable is again unbounded.

Obj. Weight Not applicable

OCL variable None

-319-

L. SLAK variable

Code SLAK[xxx]

Definition The slack variable for target command number [xxx] (Section 2.5.1 part E). This is the deviation

when the target expression is less than the target value. This variable is not included if the entry in the

penalty- field is bound. OASIS automatically assigns target numbers. Find the target numbers by

looking in the summary of targets in the OCL output (section 5.3.1). The value of this variable is

reported in OCL output in the report of target and minimax results (section 5.3.3).

Example SLAK121 – Slack variable for target number 121.

Upper bound Unbounded

Lower bound Zero

Obj. Weight Target command penalty- field (section 4.7.2 part E)

OCL variable None

M. SURP variable

Code SURP[xxx]

Definition The surplus variable for target command number [xxx] . See section 2.5.1 part E. This is the

deviation when the target expression is more than the target value. This variable is not included if the

entry in the penalty+ field is bound. OASIS automatically assigns target numbers. You can find what

the target numbers are by looking in the summary of targets in the OCL output (section 5.3.1). The

value of this variable is reported in OCL output if you are printing the report of target and minimax

results (section 5.3.3).

Example SURP121 – Surplus variable for target number 121.

Upper bound Unbounded

Lower bound Zero

Obj. Weight Target command penalty+ field (section 4.7.2 part E)

OCL variable None

-320-

N. MMS variable

Code MMS[xxx]

Definition The minimax surplus variable for constraint command number [xxx] . See section 4.7.2 part H for

description of the minimax command. See section 7.3.0 part H for a description of the use of this

variable. This is the deviation of the minimax variable from the quantity that is being equalized.

OASIS automatically assigns constraint numbers. You can find what the constraint numbers are by

looking in the summary of constraints in the OCL output (section 5.3.1). The value of this variable is

reported in OCL output if you are printing the report of target and minimax results (section 5.3.3).

Example MMS081 – Minimax surplus variable for constraint number 81.

Upper bound Unbounded until the constraint is removed from the minimax process. When the constraint is

removed, the upper bound becomes the solved value of MMS[xxx] .

Lower bound Zero until the constraint is removed from the minimax process. When the constraint is removed, the

lower bound becomes the solved value of MMS[xxx] .

Obj. Weight None

OCL variable None

O. B variable

Code B[xx][ii]

Definition The binary variable that maintains the segment ordering at segment boundary number [ii] for

segment command number [xxx] . This variable is not included if the flag NOBINARY is entered in

the segment command (section 4.7.2 part C).

Example B0203 – Binary variable that maintains the order at boundary number 3 for

segment command number 2.

Upper bound One

Lower bound Zero

Obj. Weight None

OCL variable None

-321-

7.3.0 CONSTRAINTS

Every constraint has a name that follows a coding system, so that you can identify the constraint’s purpose. Constraints are

entered into XA in a form where all decision-variable terms are on the left-hand side of the constraint, and all constant terms

are on the right-hand side of the constraint. If you look at the constraints in the LP output file (section 5.5.1), you will see that

all of the constant terms have been summed into a single term on the right-hand side.

In the generalized forms below, text in bold is literally as it appears in the LP. Italic text in [brackets] describes what you

would place in that position.

A. Objective function and priority objectives

The objective function is always labeled OBJ. OASIS always sets the objective function equal to one of the priority

objectives. A priority objective is simply the sum of all of the terms that go into the objective function for a given priority

level. See section 2.2.6 for an introduction to priority levels. Thus, the objective function is always written:

OBJ: POBJ[xx]

Where [xx] is the priority level number for which the LP is being solved.

For each priority object, [xx] , there is a constraint:

POBJ[xx]: - POBJ[xx] + [W1] * [DVAR1] + [W2] * [DVAR2] + [...] = 0

Where [Wn] is the weight on [DVARn] determined by user input. The tables in section 7.2.0 tell how weight can be

assigned to each type of decision variable. Wherever weight input is given, you also enter a priority level, which determines

which priority level [xx] this weight term is written to.

Notice that POBJ[xx] is the name of the constraint and the name of the variable.

See section 7.2.0 for definitions of the decision variables.

-322-

B. Continuity constraint

See section 2.2.4 for a discussion of the continuity constraints. OASIS writes a continuity constraint for every node except for

terminal nodes (section 2.1.4). See section 7.2.0 for definitions of the decision variables.

 For a junction node number [nnn] , the continuity constraint is:

CON[nnn]: - QT[xxa][nnn] - QT[xxb][nnn] - [...]

 + QT[nnn][yya] + QT[nnn][yyb] + [...] = [unregulated inflow]

Where:

[xxa], [xxb], [...] are node numbers of nodes connecting to node [nnn] from upstream.

[yya], [yyb],[...] are node numbers of nodes connecting to node [nnn] from downstream.

 For a reservoir node number [nnn] , the continuity constraint is the same as for a junction node, but to the left-hand

side add:

+ STO[nnn]

To the right-hand side, add:

- [evaporation] + [beginning-of-period storage]

 For demand node number [nnn] , the continuity constraint is:

CON[nnn]: - QT[xxa][nnn] - QT[xxb][nnn] - [...]

 + DEL[nnn] = [unregulated inflow]

Where:

[xxa], [xxb], [...] are node numbers of nodes connecting to node [nnn] from upstream.

The difference between the continuity constraints for demand nodes and a junction nodes is that the flow in arcs that

leave the demand node are not included, and the delivery decision variable has been added. Note that if there are

arcs leaving the demand node, they are not automatically constrained by the continuity constraint or any other

constraint. See section 2.5.2 for more information.

C. Flow-splitting constraint

For each arc which is assigned a standard minimum (target) flow (section 2.4.0 part B), OASIS writes a flow-splitting

constraint to the LP. This is a type of segmentation, similar to that of the OCL segment command (section 2.5.1 part B). The

segmentation is done so that segment A (below minimum flow) can receive a higher weight than segment B (above minimum

flow). No flow-splitting constraint is written for arcs that do not have a standard minimum (target) flow.

-323-

See section 7.2.0 for definitions of the decision variables. The flow-splitting constraint for the arc that goes from node [bbb]

to [eee] is written:

FSP[bbb][eee]: - QT[bbb][eee] + QA[bbb][eee] + QB[bbb][eee] = 0

D. Storage-splitting constraint

For each reservoir node which is uses four standard storage zones (section 2.4.0 part H), OASIS writes a storage-splitting

constraint to the LP. This is a type of segmentation, similar to that of the OCL segment command (section 2.5.1 part B). The

segmentation is done so that each segment, or zone, can receive a weight higher than the segment above it. No storage-

splitting constraint is written for reservoir nodes that have only a single standard zone.

See section 7.2.0 for definitions of the decision variables. The storage-splitting constraint for reservoir node number [nnn] is

written:

SSP[nnn]: - STO[nnn] + STA[nnn] + STB[nnn] + STC[nnn] + STD[nnn] = 0

E. Target-command constraint

For each target command (section 2.5.1 part E), OASIS writes a constraint to the LP. This constraint defines the relationship

between the target expression, the target value, and the deviation. The deviation is represented by the slack (SLAK) and

surplus (SURP) variables.

See section 7.2.0 for definitions of the decision variables. OASIS automatically assigns numbers to the target commands,

which you can find in the summary of targets in the OCL output (section 5.3.1). The constraint for target command number

[xxx] is written:

TARG[xxx]: [Target expression of xxx]

 - SURP[xxx] + SLAK[xxx] = [Target value of xxx]

Note that [Target expression of xxx] includes decision variable terms, as given in the target command. It may also include

constant terms that are moved to the right-hand side of the constraint. The slack term (SLAK) is not written if bound is given

in the penalty- field of the target command. The surplus (SURP) term is not written if bound is given in the penalty+ field of

the target command. If no condition expressions have evaluated true for this target command, then the constraint is

unbounded for the time step.

F. Constraint-command constraint

For each constraint command (section 2.5.1 part D), OASIS writes a constraint to the LP.

-324-

See section 7.2.0 for definitions of the decision variables. OASIS automatically assigns numbers to the constraint commands,

which you can find in the summary of constraints in the OCL output (section 5.3.1). The constraint for constraint command

number [xxx] is written:

CSTR[xxx]: [Constraint expression of xxx]

[Constraint expression of xxx] includes decision variable terms on the left-hand side, an equality or inequality operator, and

constant terms on the right-hand side, as given in the constraint command. If the condition expression has evaluated false for

this constraint command, then the constraint is unbounded for the time step.

If the constraint command includes a minimax variable, then OASIS automatically modifies the constraint in the LP, as

discussed below (section 7.3.0 part H).

G. Segment-command constraints

For each segment command (section 2.5.1 part B), OASIS writes a constraint to the LP to define the segmented variable as

the sum of its segments.

See section 7.2.0 for definitions of the decision variables. OASIS automatically assigns numbers to the segment commands.

The constraint for segment command number [xx] is written:

SEG[xx]: - [dvar being segmented]

 + UDEF[xyz] + UDEF[xyz+1] + [...] + UDEF[xyz+n-1]

 = - [bound 0 value]

Where:

[xyz] is the udef number of the first segment. You can find what the udef numbers are by looking in the

summary of udefs in the OCL output (section 5.3.1).

[n] is the number of segments.

Additional constraints are written if the binary option is used. If the flag NOBINARY is given in the segment command, then

these constraints are not written. These constraints use binary variables to ensure that the segments are assigned in the right

order. For example, segment 3 can not have a value until segment 2 is at its upper bound. Except for the first and last

segments, each segment has an upper bound constraint and a lower bound constraint.

See section 7.2.0 for definitions of the decision variables.

An upper-bound constraint is written for all but the last segment. For segment [ii] , it has the form:

BU[xx][ii]: UDEF[xyz+ii-1] / [bound ii value - bound ii-1 value] - B[xx][ii+1] > 0

A lower-bound constraint is written for all but the first segment. For segment [ii] , it has the form:

BL[xx][ii]: - UDEF[xyz+ii-1] / [bound ii value - bound ii-1 value] + B[xx][ii] > 0

-325-

H. Minimax-command constraints

If a constraint command expression contains a minimax variable, then OASIS writes it to the LP in a special form. See

section 7.3.0 part F for a description of how OASIS ordinarily writes a constraint-command constraint the LP. See section

2.5.1 part F and section 4.7.2 part H for discussion of the minimax command and the minimax process.

See section 7.2.0 for definitions of the decision variables. If constraint number [xxx] contains udef number [mmm] , which is

a minimax variable, then it would have been written like this under the ordinary rules:

CSTR[xxx]: [dvar terms of xxx] + UDEF[mmm] > [constant terms of xxx]

But because of the presence of the minimax variable, OASIS makes this substitution when it writes the LP:

CSTR[xxx]: [dvar terms of xxx] + UDEF[mmm]

 - MMS[xxx] = [constant terms of xxx]

Because the MMS variable has a lower bound of zero, and no upper bound, the substitution is algebraically equivalent to the

way the constraint would have been written under the ordinary form.

After the first solve at the priority level, constraint [xxx] may be found to be binding. If it is found to be binding, OASIS

fixes the MMS variable by changing its bounds. It also changes the coefficient on UDEF[mmm] to zero in CSTR[xxx]. These

changes effectively remove constraint [xxx] from the minimax process.

7.4.0 MULTIPLE-PERIOD OPTIMIZATION (MPO)

Multiple-period optimization is discussed in section 2.2.7. If the number of MPO steps is zero, then OASIS does not write or

solve an LP. The default situation is that there is one MPO step for every simulation time step. In this case, nothing special is

added to the variable and constraint names described in sections 7.2.0 and 7.3.0. However, if the number of M PO steps is

greater than one, the following modifications apply:

 Variable names are the same as in section 7.2.0, but the text #[mm] is added to the end of every variable name,

where [mm] is the number of the MPO step with which the variable is associated, and there is an instance of the

variable for each MPO step. This is true for all variables except the POBJ variable, for which there is only one

instance per LP solution.

For example, DEL333#02 represents the delivery at node 333 during the second MPO step.

 Constraint names are the same as in section 7.3.0, but the text #[mm] is added to the end of every constraint name,

where [mm] is the number of the MPO step with which the constraint is associated, and there is an instance of the

constraint for each MPO step. This is true for all constraints except the POBJ constraint, for which there is only one

instance per LP solution.

For example, SSP150#01 is the name of the storage-splitting constraint at node 150 for the first MPO step. This

constraint would say that the sum of the storage zones at reservoir node number 150 during the first MPO step must

equal the total storage at node 150 during the first MPO step.

-326-

This is a batch file
There is no pipe, so these lines are ignored

 This | model dir=run1
 is | Onevar dir=run1 in=Onevar\pp1.dat
 comment | Onevar dir=run1 in=Onevar\pp2.dat

 | model dir=run2
 Onevar dir=run2 in=Onevar\pp1.dat
 Onevar dir=run2 in=Onevar\pp2.dat
 | “c:\program files\accessories\wordpad” run2\balance.out

CHAPTER 8

REFERENCE: BATCH PROGRAM

8.0.0 BATCH PROGRAM

The OASIS batch program allows you to run a series of OASIS model runs and post-processor runs automatically. This is

similar to using an MS-DOS batch file. The batch program was created because when an MS-DOS batch file is executed, it

does not wait for OASIS to complete its execution before executing the next command in the batch file. This is a significant

problem because a model run must be complete before post-processors can read the model results. The batch program will

execute any command that can be executed from an MS-DOS prompt and it waits for the program to finish if that program is

OASIS’s model.exe or any other DOS or Windows program.

The program file is batch.exe, and it should be in the same directory as OASIS and the post-processors. The only input file

that this program reads is a single batch file. You tell it the name of the batch file by using the first, and only, command line

argument. For example, if the batch file is called batch1.txt and it is in the lower directory called ProjectX, we can execute

our batch with this line:

batch ProjectX\batch1.txt

Techniques for entering a command line with Windows are given in section 4.1.0. The techniques described there work for

the batch program the same as for OASIS.

8.1.0 BATCH FILE

The input file for the OASIS batch program is called a batch file. It is an ASCII text file. The batch program reads this file

according to lines and pipe characters. All text that follows a pipe on a single line in the batch file is considered to be a

single command line (see section 4.1.0 for reference on OASIS command lines). The batch program ignores lines that do not

contain a pipe character. All text on a line that precedes a pipe character is ignored. Here is an example batch file:

This example tells the batch program to run OASIS on the run directory named run1. Then run two Onevar files, pp1.dat and

pp2.dat on the same directory. Next, run OASIS on the run directory named run2. It does not tell the batch program to run

Onevar on the second run directory. There are commands to do those Onevar runs, but they are ignored because there are no

pipe characters preceding them. However, there is a pipe before the command to open the balance.out file for the second run

using WordPad, so this command is executed.

-327-

The text “this”, “is”, and “comment” are ignored because they come before the pipe. Note that there is no way to put

comments on the same line after the pipe.

-328-

CHAPTER 9

REFERENCE: POSITION-ANALYSIS PROGRAM

9.0.0 POSITION ANALYSIS WITH OASIS

A position analysis (PA) is a study which includes several modeling runs, all with the same operating rules and initial

conditions. Each component run, or trace, of the PA has an equal number of time steps. The only thing that varies from trace

to trace is the hydrologic scenario. The purpose of PA is to find the likelihood of the system being at a certain state at some

future time, given the current state (“position”) of the system.

HydroLogics has developed a program that allows you to do a PA with OASIS. The PA program executes OASIS repeatedly

to produce the large number of trace runs that comprise a PA. While this occurs, OASIS has no special information to

indicate that it is doing a position analysis, nor does it need any. The PA program automatically modifies the OASIS input for

each trace, and when the trace is complete, it renames the output file to ensure that it does not get overwritten by subsequent

runs.

The program is contained in the file PosAnalysis.exe. This file must be found in the same directory as model.exe. You may

execute the program with command line parameters (section 4.1.0).

The OASIS-PA program has been designed so that the time-varying data can be retrieved with two different methods. The

historical method makes it easy to use the historical time-series data. The data comes from a single set of time series, and

each trace uses a portion of this data coming from a different section of time. In the generated method, a unique set of time

series must be developed for each trace. See section 9.1.0 for details.

When the PA is done, you will need to process the results with Onevar or Plot. The desirable forms for the output data are

quite different for a PA compared to a single run. See 9.4.0 for more information.

9.1.0 SOURCE OF TIME-VARYING DATA FOR POSITION ANALYSIS

There are two different methods for the Position Analysis (PA) program to get time series data, HISTORICAL and

GENERATED. You designate which method to use in the Run table (section 4.5.2 part B). See 4.6.0 for information about

time series input in general.

In the HISTORICAL method, no new data needs to be developed. The data comes from a single set of time series.

Presumably, this is the set of time-series from the historical record. With the historical method, you should be able to easily

use the same data set for a position analysis or for a single period-of-record run.

In the historical method, each time the PA program executes OASIS, it modifies the time range information in the Range table

(section 4.5.2 part A). Thus, each trace of the PA uses a different time section of the single set of time series. Each trace

starts on the same day of the year, but nominally in a different year. Each trace is identified by the year number in which it

begins. It is not prohibited for the end of one trace to overlap the beginning of another. Under the historical method, the PA

program does not change the F-part of the DSS pathnames.

-329-

When doing a historical-data PA:

 Enter the start position of the PA in the START record of the Range table (section 4.5.2 part A). The PA program

ignores the year number.

 The PA program ignores the STOP record of the Range table.

 In the PosAnalysis table, enter the year numbers for trace numbers.

In the GENERATED method, a separate set of time-series inputs must be developed for each trace. Typically, each set of

time series is a stochastically generated, equally likely forecast of hydrologic conditions. In this method, the PA program

applies the exact same time range to each trace (that is, it does not alter the year as in the historical method). The different

sets of time-series inputs should be stored in the same database, differentiated by the F-parts of their DSS pathnames. We

suggest that you number your traces beginning at one. However, any integers are permissible for the trace numbers.

When doing the generated method, there may be some time-series data which varies by trace, and other time-series data which

does not. You only need one set of the time series which do not vary by trace.

When doing a generated-data PA:

 Enter the start position of the PA, including the correct year number, in the START record of the Range table (section

4.5.2 part A).

 The PA program ignores the STOP record of the Range table.

 For each time series that varies by trace, set the F-part of the DSS pathname (4.6.1) to the trace number.

 For each time series which varies by trace, enter the information for the time-series record into the Declare

Timeseries table (section 4.5.3 part P). In the F Path field, enter /F1.

 Do not try to use the /F1 option in the F Path field for anything but the trace number.

 For a time-series input which does not vary by trace, do not enter /F1 into the F Path field.

When the PA program is run in generated mode, it passes the F1 command-line parameter to OASIS. It thereby sets the F-

part of the pathname to the trace number for all time series which have /F1 entered in the Declare Timeseries table. The time-

series inputs which use the /F1 flag are the only inputs which differ between traces.

9.2.0 INPUT FOR THE POSITION ANALYSIS PROGRAM

The Position Analysis (PA) program only needs a few time parameters for input, for the PA program only manages OASIS so

that OASIS can do the multiple runs that comprise a PA. The input which the PA program needs is described in the sections

that follow.

-330-

9.2.1 RUN DIRECTORY

The entire PA is based in a single OASIS run directory (section 2.3.1), and all individual runs re-use the same input files. The

PA program reads the model pointer file (section 4.3.0) to learn the name of the current run directory. You may enter the

command line parameter DIR (section 4.1.0) to bypass the model pointer file.

9.2.2 CONTROL FILE

The PA program reads the control file named model.cf (section 4.4.0) in the run directory. You may specify a control file

with a name other than model.cf using the command-line parameter CF (section 4.1.0).

The PA program creates a temporary copy of the control file. Then it passes a command-line parameter to OASIS, so the

trace runs of OASIS will read the temporary file, not model.cf. The temporary file contains all the same information as the

original, except the name of the time-parameters database (section 4.5.2) and possibly the initial conditions database (section

4.5.6) are changed. The PA program does not modify the original copy of the control file.

-331-

9.2.3 TIME-PARAMETERS DATABASE

The PA program requires some time input that OASIS does not read: the PosAnalysis table (section 4.5.2 part F) and the

PosAnal NumSteps, and PosAnal DataSource fields in the Run table (section 4.5.2 part B).

Use the PosAnalysis table to specify the identities of the traces. Use the PosAnal NumSteps field in the Run table to specify

the length of a trace (all have an equal number of time steps in length). The PosAnal DataSource field in the Run table

specifies whether the data is read using the historical or generated method (section 9.1.0). The PA program only reads the

START record from Range table (section 4.5.2 part A). For historical-data runs, the year in the Range table is ignored, but it

is important for generated-data runs.

The PA program creates a temporary copy of the time-parameters database, which is used by the individual trace runs of

OASIS. The program automatically enters different start and end times for each trace into the Range table of this database.

The PA program does not modify the original copy of the time-parameters database.

9.2.4 INITIAL CONDITIONS

You may run the PA program with a different set of initial conditions for each trace. Note that this would not be a true

position analysis, because, by definition, all traces of a PA have the same set of initial conditions, or position. However, you

may wish to do studies that are similar to a PA, but have varying initial conditions.

You may name a different initial-conditions file in each record of the InitCond file field in the PosAnalysis table (section 4.5.2

part F). If a record is blank in this field, then that trace will use the initial-conditions file named in the control file (section

4.4.0). Leave all records blank in this field to do a true PA.

9.3.0 OUTPUT OF THE POSITION ANALYSIS

Each trace run of OASIS writes an entire time-series output database (section 5.6.0). The trace runs do not produce balance-

sheet output, OCL output, or LP output (Chapter 5). In order to get those output files, you have to run OASIS for the trace

that you want without the PA program .

The trace run of OASIS writes the time-series output database with the name given in the control file, model.cf (section 4.4.0).

However, when each trace is complete, the PA program renames the file with a unique name, so that it will not be overwritten.

If the original name of the output file is:

[name].[extension]

then the new name is:

[name][trace number].[extension]

Since there is one output file for each trace, and there are many traces, you may find it convenient to have all of the output

files written into a special subdirectory. In the control file, you can write the name of the output file with a relative path to a

-332-

subdirectory, and all of the output files will go into that same subdirectory. For example, the line in the control file may look

like this:

| output\Output.DSS

and all of the output files will be found in the subdirectory output. This convention is considered standard for use with the

OASIS GUI (section 3.3.7).

9.4.0 POST-PROCESSING THE POSITION ANALYSIS

Onevar and Plot can process the results of a position analysis (PA) if you give them the command-line parameter

POSANALYSIS (section 4.1.0). When given this parameter, the post-processors take special steps to read the PA output.

There are restrictions on the way that output can be presented from a PA.

If you have a completed a successful PA run, then there is enough information for the post-processors to read the results.

Other than passing the command-line parameter POSANALYSIS, you do not need to take special steps to run the post-

processors. Do not try to use the command-line parameter F1 when post-processing a generated-data PA.

9.4.1 ONEVAR WITH POSITION ANALYSIS

To correctly process PA output, you must give Onevar the command line parameter POSANALYSIS (section 4.1.0). If you

are using the generated-data method, do not give it the command-line parameter F1. If you are using the OASIS GUI

(Chapter 3), the command-line parameters are automatically handled for you.

The format of Onevar tables is somewhat restricted due to the large amount of data in a PA. With one exception, the only

output format that Onevar can produce for a PA is the TABLE format (section 6.1.4). In the TABLE format for a PA there is

one row per trace. The length of the row is always the number of periods in the trace. For example, if there are 3 time steps

per trace, the table has 3 columns. If there are 47 time steps per trace, the table has 47 columns.

You may enter any value into the :STEP: field (section 6.1.7 part I) with the TABLE format.

You may apply a trace filter to your Onevar output in order to display only selected traces, or to sort the traces in a special

way. See section 9.4.3.

Format types other than TABLE can be produced only if the value in the :STEP: field is WHOLERUN (section 6.1.7 part I).

When the post-processor time step is WHOLERUN,

 in the COLUMN and SEQUENTIAL formats, each output row represents one trace.

 in the REPORT format, there is one report block per trace.

-333-

9.4.2 PLOT WITH POSITION ANALYSIS

To correctly process PA output, you must give Plot the command line parameter POSANALYSIS (section 4.1.0). If you are

using the generated-data method, do not give it the command-line parameter F1. If you are using the OASIS GUI (Chapter

3), the command-line parameters are automatically handled for you.

Plot can present PA output only in one of two ways:

 Enter WHOLERUN in the :STEP: field and PROBABILITY in the :SORT: field. When this is done, the plot contains

one value per PA trace.

 Use a trace-filter (section 9.4.3). When this is done, the plot contains one time-series line for each trace. However,

you cannot plot multiple runs on the same plot with a trace-filter.

9.4.3 USING A TRACE FILTER

Using a trace filter in your post-processor output allows you to

 sort the display of PA traces by some criteria other than the values of the output being displayed

and/or

 display some of the PA traces but exclude others.

The trace filter is defined in the Onevar input file. See section 6.1.10 for complete information about using a trace filter.

Note that using a trace filter is the only way you can get Plot to display time-series output for individual traces.

-334-

GLOSSARY

Absolute Period. A counter which equals 1 for the first simulation time step and is incremented by one for every time step

thereafter. This counter is never reset. It may be referred to with the OCL absolute period variable (section 4.7.4).

Absolute Time-Step Index. (section 4.7.4 part A) You add this as a suffix to an OCL variable to refer to a time step other

than the current step. Your reference is not relative to the current step. This is in contrast with a time lag.

Access (section 4.5.0) (Microsoft Access or MS Access). A database program written by Microsoft, or the file format

created by this program. OASIS’ standard input files are in Access format.

Alternate Optima. (section 2.2.5) Multiple sets of solutions to the decision variables which would all give an optimal

solution to the LP routing problem.

Arc. (section 2.1.2) An element of an OASIS model which represents the flow of water from one location (or node) to

another.

Area. (section 2.4.0 part F) The surface area of a reservoir, which varies with the amount of water in storage.

Balance Sheet. (section 5.2.0) A report of all of the inflows and outflows for all the nodes in the system for a portion of the

simulation time range. OASIS automatically writes these in the balance-sheet output file.

Branched Condition. (section 4.7.2 part A) A condition block in an OCL command that is actually a superset of more

condition blocks, called the branches. The branches can only be evaluated if the condition upon which the branch is

based is found true.

Category. (section 3.7.1 part B) As in node category, arc category, and inflow category. A user-defined classification for

a node, arc, or node inflow used by the OASIS GUI. Each category is represented on the schematic by a symbol of

distinct shape and color. The category concept should not be confused with node type. Although each node category

can only represent one node type, a node type might be represented by many different node categories.

Command Line. (section 4.1.0) The command with a list of arguments, that is issued to launch a Windows program.

Comment. (section 4.7.0 part D) A string of text found in OCL input that provides information for users to read, and is not

interpreted as OCL code. Special markers indicate to OASIS which text is comment so that it is not interpreted as code.

You may put the comment markers around sections of valid OCL code in order to make them inactive.

Condition. (section 4.7.2 part A) An input field of an OCL command containing an expression that can be evaluated to

either true or false. Other input fields associated with the condition will be accepted only if the condition evaluates true.

Constraint. See Operating Constraint.

Continuation. (section 2.8.3) A way of running OASIS that restarts a run that has already been partially or fully run. OASIS

reads the results of the previous run and then begins simulating at some point after the starting period of the run, as

though the previous run had never been stopped.

Continuity (section 2.2.4) (Continuity-of-flow). The modeling criteria which dictates that the volume of water coming into

a node must equal the change in storage plus the volume leaving the node. Another way of understanding this is that the

model must account for all water that enters or leaves the system. OASIS automatically writes continuity-of-flow

constraints to the LP router to ensure that this criteria is not violated.

Control File. (section 4.4.0) An input file whose only role is to identify the major input and output files processed by the

model.

Cycle. See Time Cycle.

Dead Storage. (section 2.4.0 part H) By convention, this means the water that cannot be drained from a reservoir due to the

position of the outlets. OASIS provides a standard feature for entering a dead storage quantity for a reservoir node,

although it is up to you to define rules that would prevent this water from being drained.

Decision Variable. (section 2.2.1) A variable whose value is decided by the LP router.

Delivery. (section 2.4.0 part D) The amount of water actually routed to a demand node.

Demand Node. (section 2.1.1 part C) A node representing a part of the system where water is removed from the system for

some purpose, such as irrigation, municipal supply, or wetlands maintenance.

-335-

Demand. (section 2.4.0 part D) The amount of water that will satisfy the purpose at a demand node.

DLL. (section 2.5.1 part I) (Dynamic-Link Library) A computer file containing executable instructions. Other programs

call the DLL to execute these instructions. DLL files are identified by the filename extension .DLL.

DSS. (section 4.6.0) (HEC-DSS) A database format developed by the US Army Corps of Engineers Hydrologic Engineering

Center (HEC), especially designed for handling time-series data. DSS stands for Data Storage System.

Elevation. (section 2.4.0 part F) The water-surface elevation of a reservoir, measured from a datum (commonly sea level). It

varies with the amount of water in storage.

Executables folder. (section 3.3.3) The folder where the main OASIS executables are found. This folder may or may not be

the same as the home folder.

Expression. (section 4.7.3) OCL expression. A basic element of OCL input; a string of OCL symbols, including constant

values, variables, mathematical operators, parentheses, and functions of variables. At simulation time, each expression

can be mathematically evaluated to a constant value.

External Module. (section 4.7.7) A separate program which runs in parallel with OASIS, and exchanges data with OASIS

at the same time. OASIS is seen as just one module, equipped to simulate only certain aspects of a water resources

system. The external modules handle computations and simulate phenomena that are outside of OASIS’ scope. Some

examples of aspects that could be modeled by an external module are snow melt forecasting, hydrodynamics, water

quality, and demand reduction.

Feasible. Describing a routing solution that satisfies all of the constraints given to the LP router.

Gaming. (section 3.7.2) A modeling exercise where the modelers stop the model at every time step (or at short intervals),

evaluate the system, and change the operating rules before continuing to the next time step. The OASIS GUI has

features that can help you do gaming runs.

Goal. See Operating Goal.

GUI. (Graphical User Interface) A program with which you create and modify an OASIS run using graphical controls.

The GUI interfaces with computer files so that you don’t have to. Thus, the whole modeling process is more user-

friendly. While OASIS is completely generalized, HydroLogics can tailor the GUI program to individual clients.

GUI Plugin. (section 3.3.3) A portion of the GUI program which is contained in the file OASISGUI_Plugin.ocx. For

different projects, different versions of this file can be used, so that while the bulk of the GUI remains the same, a

portion contains features that are custom made for a particular project.

HEC-DSS. See DSS.

Home folder. (section 3.3.2) The central folder for organizing OASIS data. This folder should contain pointer files and

configuration files. Other data is contained in subfolders of the home folder. The home folder may or may not be the

same as the executables folder.

IHA. (section 3.6.4 part C) Indicators of Hydrologic Alteration, a software package created and distributed by the Nature

Conservancy which does a variety of statistical analyses on daily hydrologic data.

Imbalance. (section 5.2.0) A condition where inflow, outflow, and storage at a node do not obey the continuity-of-flow

criteria. OASIS’ balance-sheet is programmed to report any imbalance, although it should only be found if there is no

feasible solution.

Infeasible. (section 2.2.2) Describing set of constraints that cannot all be satisfied by the LP router.

Inflow. (section 2.1.3) Water that enters the system at a node.

Julian Date. A date descriptor which is 1 for the first day of the year and 366 for the last day of the year. May be referenced

with the julian variable in OCL (section 4.7.4).

Junction Node. (section 2.4.0 part A) A node at which water cannot be stored, and is not associated with a demand.

Lag. (section 4.7.4 part A) You add this as a suffix to an OCL variable to refer to a time step other than the current step.

Your reference is relative to the current step. This is in contrast with an absolute time-step index.

Linear Program. (section 2.2.0) (LP) The set of all the operating rules (goals and constraints) in the system for the given

simulation time step. This consists of a set of expressions that are linear with respect to the decision variables. You

do not create the LP in a direct sense. OASIS automatically builds it from your standard input and OCL input. The LP

solver takes the LP and returns the values of (solves) the decision variables.

Locked Runs. (section 3.4.9) OASIS runs where you or another user has specified that there can be no further changes to the

input data.

-336-

Logical Operator. (section 4.7.3) The mathematical operators and and or, for use in OCL.

Lower Rule Curve. (section 2.4.0 part H) (Lower Rule) The boundary between the lowest operable zone in a reservoir and

the zone above it. OASIS provides a standard input field for you to define this value at any reservoir node, but it is up

to you to define the rules that limit use of the reservoir zones.

LP. See Linear Program.

LP Router. (section 2.2.0) The part of OASIS which converts the operating rules into an LP and then solves the LP in order

to compute the values of the decision variables.

LP Solver. (section 2.2.0) A computer algorithm that finds the values of the decision variables that optimize the objective

function of an LP without violating the constraints. OASIS uses the software package XA as its LP solver.

Maximu m Flow. (section 2.4.0 part A) The highest flow rate that can be routed through an arc, which OASIS treats as a

constraint. This is most often used to model a physical flow capacity.

Maximum Storage. (section 2.4.0 part H) The storage capacity at a reservoir node, which OASIS treats as a constraint.

Maximum Reverse Flow. (section 2.4.0 part C) The lowest flow rate that can be routed through an arc, which OASIS treats

as a constraint. This is used to model a physical flow capacity in the reverse direction. Generally, the lowest flow rate

through an arc is zero, but defining a negative maximum-reverse-flow value enables water to flow both ways in an arc.

Message Queue. (section 2.5.1 part I) A list of messages being transmitted between Windows applications. Applications can

send messages to other applications via the queue and also receive them. Each message consists of just a few bytes of

data.

Meta Command. (section 4.7.0 part F) An OCL command that serves a purpose other than being evaluated at simulation

time. Keywords for meta commands are distinguished by the fact that they end and start with a colon.

Minimax. (section 2.5.1 part F) A technique for setting an LP goal of making several quantities equal to each other.

Minimax works by minimizing the maximum of the quantities. The OCL Minimax command allows you to define a

minimax.

Minimum Flow. (section 2.4.0 part B) The lowest desired flow rate that should be routed through an arc, which OASIS

treats as a goal.

Mode. (section 3.4.7) The OASIS GUI has two available modes: simulation mode (single-trace, long-term studies) and

position-analysis mode (multiple-trace, short-term studies). The GUI provides some different input and output

management for the different modes.

Module. See External Module.

MPO Step. (section 2.2.7) One time step of the set of time steps (the optimization horizon) that are to be solved

simultaneously in a single call to the LP solver (see MPO). OASIS numbers the MPO steps 1, 2, 3...etc.

MPO. See Multiple-Period Optimization.

Multiple-Period Optimization. (section 2.2.7) (MPO) A simulation technique where OASIS solves for the values of the

decision variables of more than one time step in a single call to the LP router. This is distinct from the standard case,

where OASIS only solves one time step at a time.

Node. (section 2.1.1) An element of an OASIS model which represents a location of interest in the system. OASIS tracks

the inflow and outflow to the node. Flows to and from other parts of the system occur in arcs and flows in and out of

the system are shown as inflows.

Non-decision Variable. (section 4.7.4) A variable whose value is not decided by the LP router. Generally, the values of

non-decision variables are known and entered as constants to the LP router.

OASIS. The generalized modeling program developed by HydroLogics. OASIS is designed to be flexible for simulating the

operating rules of a water-resources system, and to easily connect with other programs that simulate specialized aspects

of the system.

Objective Function. (Chapter 7) A linear expression of decision variables expressing the points gained or lost for all of the

operating goals for the time step. The LP router solves the routing of water by finding the set of values for the

decision variables that gives the maximum possible value of the objective function. You do not directly create the

objective function; the LP router automatically builds it out of all of the operating goals you define.

OCL. (section 2.5.0) (Operations Control Language) A language-based input to OASIS that allows you tremendous

flexibility in defining operating rules.

Onevar. (section 6.1.0) The OASIS post-processor program that produces custom text-table output.

-337-

Onevar input file. (section 6.1.3) A file that contains instructions for what data Onevar should write to a text table and how

it should be presented.

Operating Constraint. (section 2.2.2) An operating rule entered into the LP router that cannot be violated. Failure to meet

a constraint results in an infeasible LP. All operating rules entered into the LP router are either constraints or goals.

The OCL Constraint command is a general way of entering a constraint into the model, although there are many other

ways to define a constraint.

Operating Goal. (section 2.2.3) An operating rule that the LP router must try to meet, but which must compete with other

goals. Failure to meet a goal does not result in an infeasible solution.

Optimize. (section 2.2.0) To find the best possible routing for the given set of operating rules. OASIS optimizes the routing

with an LP solver.

PA. See Position Analysis.

Parallel. (section 4.7.7) (Running in Parallel) Said of OASIS and external modules because they can compute each

simulation time step together and exchange information before proceeding to the next time step. A more primitive way

of combining models would be to run them in series, doing a complete run of one model, and then making the results

available to another model. Running in parallel can provide much more accurate results by allowing conditions in one

model to respond to conditions in another.

Parent Module. (section 4.7.7 part C) The module that is initiated first and is thus responsible for initiating the other

modules.

Pattern Variable. (section 4.5.1) An input variable whose values may vary within the year, but repeat from year to year.

Penalty. (section 2.2.3) A weight with negative value.

Plugin. See GUI Plugin.

Pointer File. (section 2.3.2, section 6.1.2, section 6.2.1) A file which tells OASIS which run to execute, or tells the post-

processor which input file to use.

Position Analysis. (Chapter 9) (PA) A study composed of several model runs, all with the same operating rules and initial

conditions. Each component run, or trace, of the PA has an equal number of time steps. The only thing that varies

from trace to trace is the hydrologic scenario.

Post-processing. (Chapter 6) Reading OASIS input and output, performing computations upon it, and presenting it in tables

or graphical plots so that the analyst can evaluate the performance of the simulated system.

Post-processor steps. (section 6.1.7 part I) By default, post-processors present data at the same time steps that were used for

simulation. However, you may use the :STEP: field in the Onevar header to designate another set of time steps, which

we call post-processor steps. Post-processor output is first computed at simulation time steps, then redistributed to the

post-processor steps.

Post-shift tables. (section 6.1.8) tables that Onevar does not evaluate until after the other tables have been redistributed to

post-processor steps. Designate such tables by placing them after the :TIMESHIFT: marker.

Primary Units. (section 2.9.0) The units of measurement in which OASIS works. In general, values are measured in primary

units unless an explicit conversion is done.

Priority Level. (section 2.2.6) A number associated with a weight that tells OASIS that the goal outranks weights with lower

priority and is outranked by goals with higher priority. The LP router solves each priority level separately. In most

models, the priority level is always equal to one and need not be of concern.

Quick View. (section 3.6.4 part I) A feature of the OASIS GUI that allows you to graphically select a variable, for which the

GUI automatically creates post-processor input and output files to view the values of that variable.

Range. See Time Range.

Relational Operator. (section 4.7.3) The mathematical operators that determine whether a quantity is less than, equal to, or

greater than another candidate (<, <=, =, >=, >).

Reservoir Node. (section 2.1.1 part B) A node where it is possible to store water.

Return Flow. (section 2.1.1 part C) The water that comes back into the system from a demand node.

Router. See LP Router.

-338-

Routing. (section 2.2.0) The process of computing how much water flows into, through, and out of the system, with

subsequent changes in storage. The simulated routing decision is based on operating rules that express human control

and the physical properties of the system. OASIS simulates routing by solving an LP.

Rule Curves. (section 2.4.0 part H) The time-varying boundaries between storage zones in a reservoir, including the lower

rule curve and upper rule curve. OASIS provides standard input features for you to define rules curves at a reservoir

node, although it is your responsibility to create operating rules that treat each storage zone appropriately.

Run Directory. (section 2.3.1) The folder on your computer’s file system that is designed to contain all input and output for

one OASIS run. Note that there are ways for you to locate your input and output outside of the run directory or in sub-

folders of the run directory.

Schematic. (section 2.1.0) A diagram showing the nodes and arcs in your OASIS model, providing an overview of the

system being modeled. The OASIS GUI provides an interactive schematic control which is directly linked to your

model input.

Segment. (section 2.5.1 part B) A technique for dividing a decision variable into parts, called segment variables. The sum

of the segment variables equals the original variable. The first segment variable represents the first increment of the

original variable. The second segment variable has a value of zero until the first segment variable has reached its

maximum value. The third segment has a value of zero until the second segment has reached its maximum value, and so

forth. The OCL Segment command allows you to create segments.

Shortage. (section 2.4.0 part D) The difference between the demand and the delivery at a demand node.

Simulation Command. (section 4.7.0 part E) An OCL command that is evaluated each simulation time step.

Solve. (section 2.2.0) To find the values of the decision variables that optimize the objective function of an LP without

violating the constraints

Solver. See LP Solver.

Splash Screen. (section 3.3.2) A window that is displayed when the OASIS GUI is started. The splash screen provides

identification of OASIS and of the project.

Step filter. (section 6.1.9 part E) An optional feature of the Onevar input file that allows you to selectively omit certain

time steps from the post-processor output.

Subgroup. (section 3.3.8) A subset of the data for your OASIS project, which only includes a subset of the runs, modules,

and/or post-processor files of the project. Help you segregate runs that should not be compared with each other.

Different subgroups may even represent different water systems. The OASIS GUI has special features that help you

manage subgroups.

Substitute. (section 4.7.1 part I) A special string of text (identified with a substitute name) that stands in for another string of

text in OCL. All substitute names must be enclosed in square brackets. By changing the definition of the substitute, all

instances of the substitute are automatically changed.

Surface Area. See Area.

Table. [1] (section 6.1.9 part C) A unit of post-processor output that defines a time-series output variable and specific

formatting information. [2] (section 4.5.0) A conceptual container in a database, which organizes data by fields and

records.

Terminal Node. (section 2.1.4) A node at which water may flow freely out of the system, as decided by the LP router.

Time Cycle. (section 2.8.1) A conceptual framework for defining the size and characteristics of OASIS time steps. The

cycle is composed of a set of time steps. Each step within the cycle may have a separate size, label, and MPO horizon.

All time steps are defined by continuous, consecutive cycles, such that the first step of one cycle has the same defining

characteristics as the first step of all the other cycles.

Time Lag. See Lag.

Time Range. (Section 2.8.2) The simulated time interval from the starting simulation time step to the ending simulation

time step.

Time Series. (section 4.6.0) A variable with unique values for every time step.

Time Step. (section 2.8.1) (Simulation Time Step) An interval of time for which OASIS computes results. One value is

computed for each model variable for each time step. The time steps are consecutive. For example, if each time step is

one day long, then OASIS computes results for one day, and then it computes results for the following day. It never

skips a day.

-339-

Trace. (Chapter 9) One of the many runs that comprise a position analysis. Each trace is associated with a unique

hydrologic scenario input, but is otherwise identical to the other traces.

Udef. (section 2.5.1 part A) (User-defined variable) A simulation variable created in OCL with a name and a purpose that

you determine.

Upper Rule Curve. (2.4.0 part H) (Upper Rule) The boundary between the highest zone in a reservoir and the zone below

it. OASIS provides a standard input field for you to define this value at any reservoir node, but it is up to you to define

the rules that limit use of the reservoir zones.

User-defined Variable. See Udef.

VEDIT. (section 3.2.0) ASCII-text editing software produced by Greenview Data Inc. VEDIT is very efficient and has

much more powerful features than Windows WordPad. The OASIS GUI relies on VEDIT to display ASCII files and

make them available for editing.

Water Year. (section 2.8.5) A convention used by hydrologists where the year begins on October 1 and ends on September

30. OASIS can run on a water year if you set the year scheme appropriately.

Weight. (section 2.2.3) A value you assign to every operating goal to express the importance of using water for that goal in

comparison to other goals.

Whitespace. (section 4.7.0 part A) a sequence of one or more space, tab, or carriage-return characters. Whitespace can be

used to separate words in OCL syntax. Whitespace cannot be used in the middle of a word.

XA. (section 2.2.0) A software package developed, sold, and copyright by Sunset Software Technology. OASIS calls XA to

solve the LP routing.

Year Scheme. (section 2.8.5) The way in which OASIS determines the beginning and end of the year. For most purposes,

we treat January 1 as the beginning of the year, but OASIS allows you to designate any date as the first day of the year.

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22
	Page 23
	Page 24
	Page 25
	Page 26
	Page 27
	Page 28
	Page 29
	Page 30
	Page 31
	Page 32
	Page 33
	Page 34
	Page 35
	Page 36
	Page 37
	Page 38
	Page 39
	Page 40
	Page 41
	Page 42
	Page 43
	Page 44
	Page 45
	Page 46
	Page 47
	Page 48
	Page 49
	Page 50
	Page 51
	Page 52
	Page 53
	Page 54
	Page 55
	Page 56
	Page 57
	Page 58
	Page 59
	Page 60
	Page 61
	Page 62
	Page 63
	Page 64
	Page 65
	Page 66
	Page 67
	Page 68
	Page 69
	Page 70
	Page 71
	Page 72
	Page 73
	Page 74
	Page 75
	Page 76
	Page 77
	Page 78
	Page 79
	Page 80
	Page 81
	Page 82
	Page 83
	Page 84
	Page 85
	Page 86
	Page 87
	Page 88
	Page 89
	Page 90
	Page 91
	Page 92
	Page 93
	Page 94
	Page 95
	Page 96
	Page 97
	Page 98
	Page 99
	Page 100
	Page 101
	Page 102
	Page 103
	Page 104
	Page 105
	Page 106
	Page 107
	Page 108
	Page 109
	Page 110
	Page 111
	Page 112
	Page 113
	Page 114
	Page 115
	Page 116
	Page 117
	Page 118
	Page 119
	Page 120
	Page 121
	Page 122
	Page 123
	Page 124
	Page 125
	Page 126
	Page 127
	Page 128
	Page 129
	Page 130
	Page 131
	Page 132
	Page 133
	Page 134
	Page 135
	Page 136
	Page 137
	Page 138
	Page 139
	Page 140
	Page 141
	Page 142
	Page 143
	Page 144
	Page 145
	Page 146
	Page 147
	Page 148
	Page 149
	Page 150
	Page 151
	Page 152
	Page 153
	Page 154
	Page 155
	Page 156
	Page 157
	Page 158
	Page 159
	Page 160
	Page 161
	Page 162
	Page 163
	Page 164
	Page 165
	Page 166
	Page 167
	Page 168
	Page 169
	Page 170
	Page 171
	Page 172
	Page 173
	Page 174
	Page 175
	Page 176
	Page 177
	Page 178
	Page 179
	Page 180
	Page 181
	Page 182
	Page 183
	Page 184
	Page 185
	Page 186
	Page 187
	Page 188
	Page 189
	Page 190
	Page 191
	Page 192
	Page 193
	Page 194
	Page 195
	Page 196
	Page 197
	Page 198
	Page 199
	Page 200
	Page 201
	Page 202
	Page 203
	Page 204
	Page 205
	Page 206
	Page 207
	Page 208
	Page 209
	Page 210
	Page 211
	Page 212
	Page 213
	Page 214
	Page 215
	Page 216
	Page 217
	Page 218
	Page 219
	Page 220
	Page 221
	Page 222
	Page 223
	Page 224
	Page 225
	Page 226
	Page 227
	Page 228
	Page 229
	Page 230
	Page 231
	Page 232
	Page 233
	Page 234
	Page 235
	Page 236
	Page 237
	Page 238
	Page 239
	Page 240
	Page 241
	Page 242
	Page 243
	Page 244
	Page 245
	Page 246
	Page 247
	Page 248
	Page 249
	Page 250
	Page 251
	Page 252
	Page 253
	Page 254
	Page 255
	Page 256
	Page 257
	Page 258
	Page 259
	Page 260
	Page 261
	Page 262
	Page 263
	Page 264
	Page 265
	Page 266
	Page 267
	Page 268
	Page 269
	Page 270
	Page 271
	Page 272
	Page 273
	Page 274
	Page 275
	Page 276
	Page 277
	Page 278
	Page 279
	Page 280
	Page 281
	Page 282
	Page 283
	Page 284
	Page 285
	Page 286
	Page 287
	Page 288
	Page 289
	Page 290
	Page 291
	Page 292
	Page 293
	Page 294
	Page 295
	Page 296
	Page 297
	Page 298
	Page 299
	Page 300
	Page 301
	Page 302
	Page 303
	Page 304
	Page 305
	Page 306
	Page 307
	Page 308
	Page 309
	Page 310
	Page 311
	Page 312
	Page 313
	Page 314
	Page 315
	Page 316
	Page 317
	Page 318
	Page 319
	Page 320
	Page 321
	Page 322
	Page 323
	Page 324
	Page 325
	Page 326
	Page 327
	Page 328
	Page 329
	Page 330
	Page 331
	Page 332
	Page 333
	Page 334
	Page 335
	Page 336
	Page 337
	Page 338
	Page 339

