
Broad River Basin Model

July 11, 2012

Water Allocation Committee

Tom Fransen Division of Water Resources NC Department of Environment and Natural Resources

Agenda

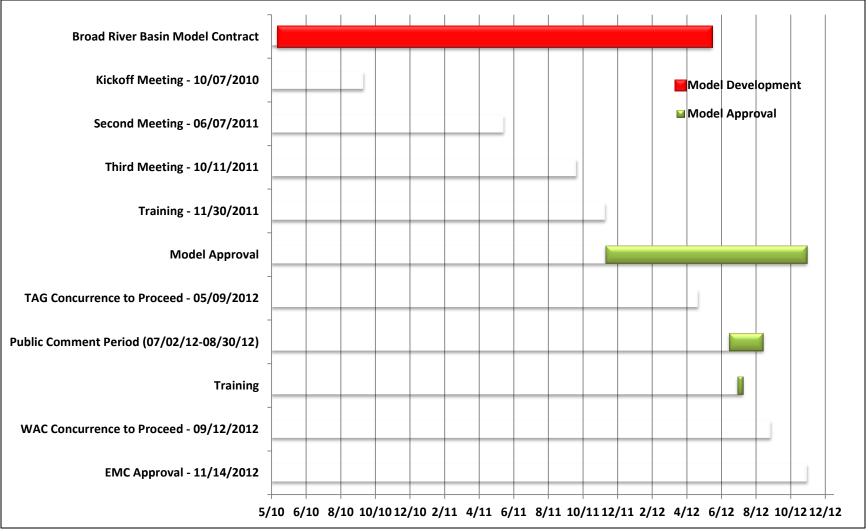
- Background
- Process
- Model Basics
- Validation
- Next Steps
- Questions

Improve River Basin Modeling – SL 2010-143

- (3) Model. Each basinwide hydrologic model shall:
- a. Include surface water resources within the river basin, groundwater resources within the river basin to the extent known by the Department, transfers into and out of the river basin that are required to be registered under G.S. 143-215.22H, other withdrawals, ecological flow, instream flow requirements, projections of future withdrawals, an estimate of return flows within the river basin, inflow data, local water supply plans, and other scientific and technical information the Department deems relevant.
- b. Be designed to simulate the flows of each surface water resource within the basin that is identified as a source of water for a withdrawal registered under G.S. 143-215.22H in response to different variables, conditions, and scenarios. The model shall specifically be designed to predict the places, times, frequencies, and intervals at which any of the following may occur:
 - 1. Yield may be inadequate to meet all needs.
 - 2. Yield may be inadequate to meet all essential water uses.
 - 3. Ecological flow may be adversely affected.
- c. Be based solely on data that is of public record and open to public review and comment.
- (6) Approval and modification of hydrologic models.

Broad Hydrologic Model

- Basin models required by Session Law 2010-143 (G.S. §143.355(o))
- DWR uses OASIS for meeting the requirements of SL2010-143.
 - OASIS is a patented, mass balance, water resources simulation/optimization model.
 - Change-in-Storage = Inflow Outflow
- Uses Operations Control Language (OCL) to communicate operating policies to the model



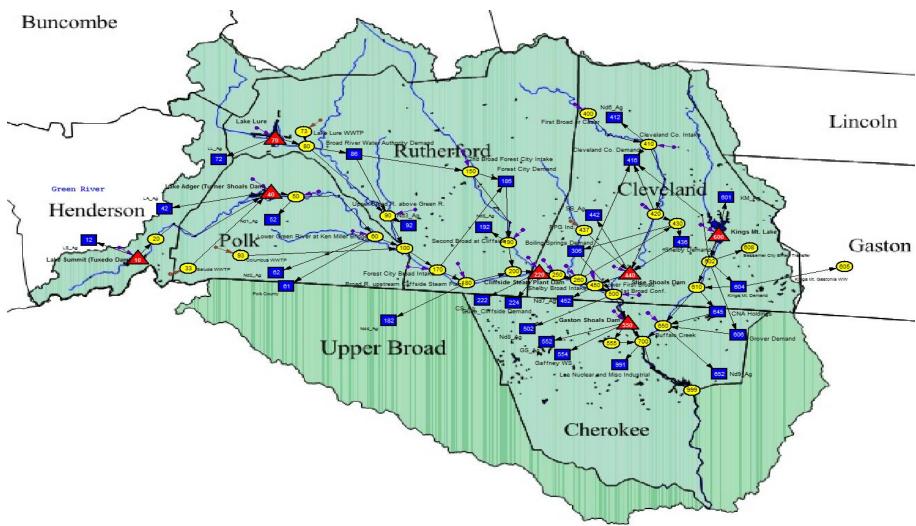
Applications of Broad OASIS Model Alternatives Evaluation – "What if?"

- 1. Evaluation of the combined basinwide effects of current and future water supply demands.
- 2. Evaluation for Interbasin transfer permit applications.
- 3. Model will be on the DWR server and available to stakeholders and their consultants.
 - Development of individual water supply plans.
 - A platform for developing risk-based triggers for water shortage response plans.
 - SEPA impact analysis.

Broad River Basin Modeling Process

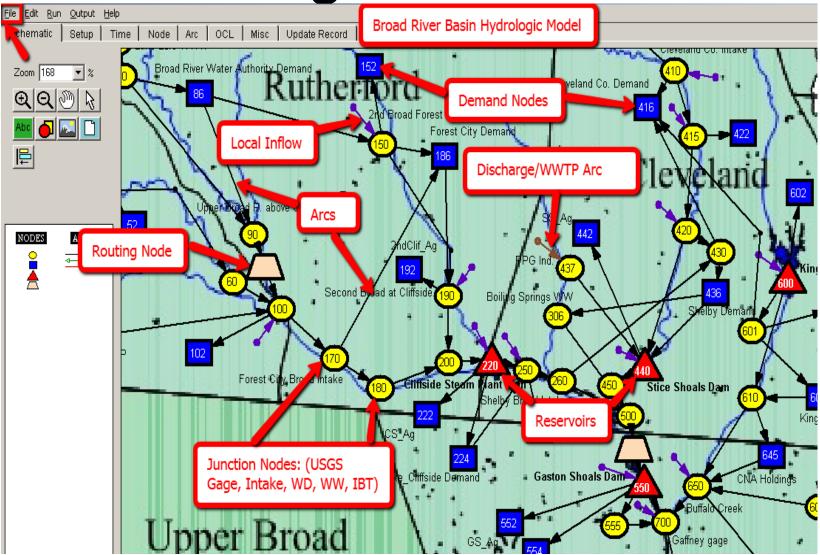
Model Basics

- Models <u>water quantity</u> as water moves downstream considering additions and deletions at specified locations.
- Built on OASIS with OCL[™] platform developed by HydroLogics, Inc.
- Not for flood analysis
- Does not model water quality
- Does not directly model ground water

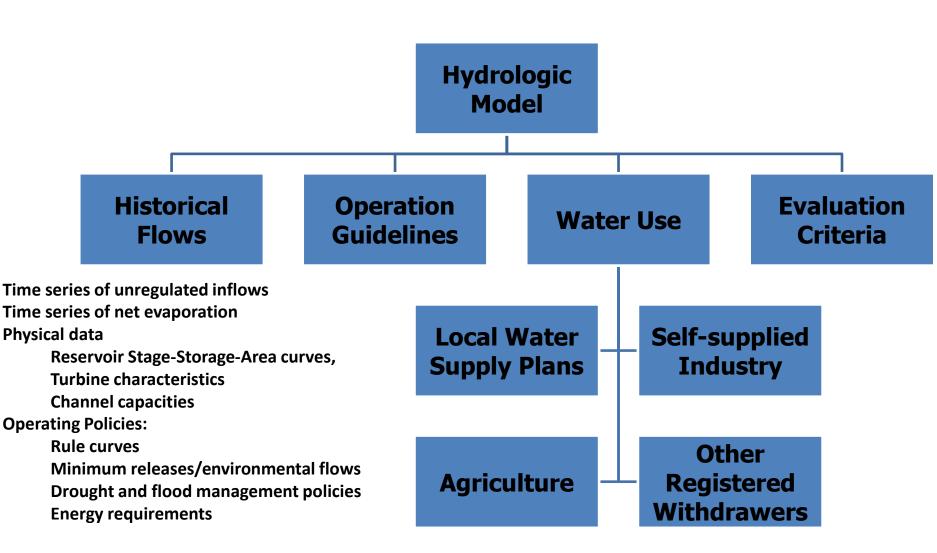


Overview of Broad River Basin Hydrologic Model

- Model schematic
- Model inputs
- Model outputs
- Run configurations
- Key graphics, validation plots
- Systems Drought Plan
- Model report



Model Schematic



Reading The Schematic

Model Input

Operations Guidelines

Examples

Quantity and timing of specific flows

- Aquatic habitats
- Water quality protection
- ✓ Intake coverage
- Recreation
- Reservoir water level limits and timing
 - Structural limits
 - Aquatic habitat protection
 - ✓ Intake coverage
 - Boat ramp access
 - Authorized purposes and storage allocations

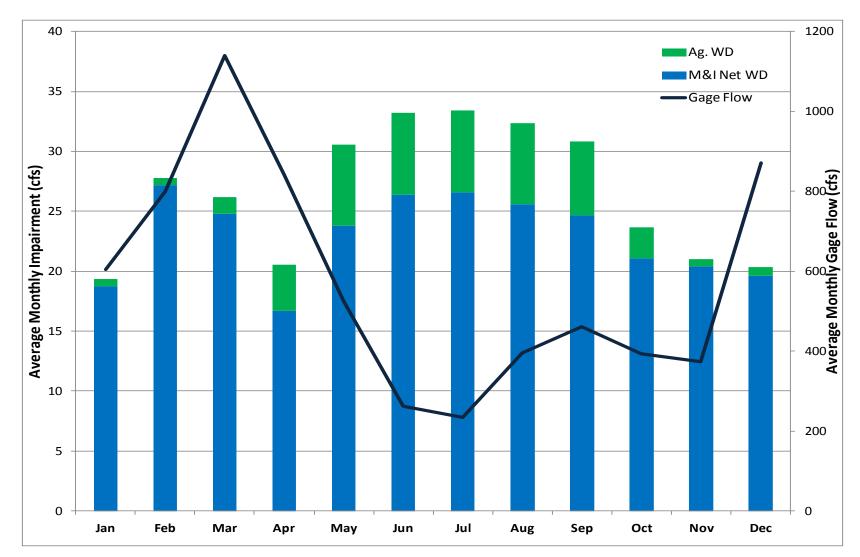
Principle Data

Water Use

- Water Withdrawal Registrations
 - Agriculture > 1,000,000 gallons per day
 - Non-agriculture > 100,000 gallons per day
- Local Water Supply Plans
 - Local Government Water Systems
 - Other Large Community Water Systems

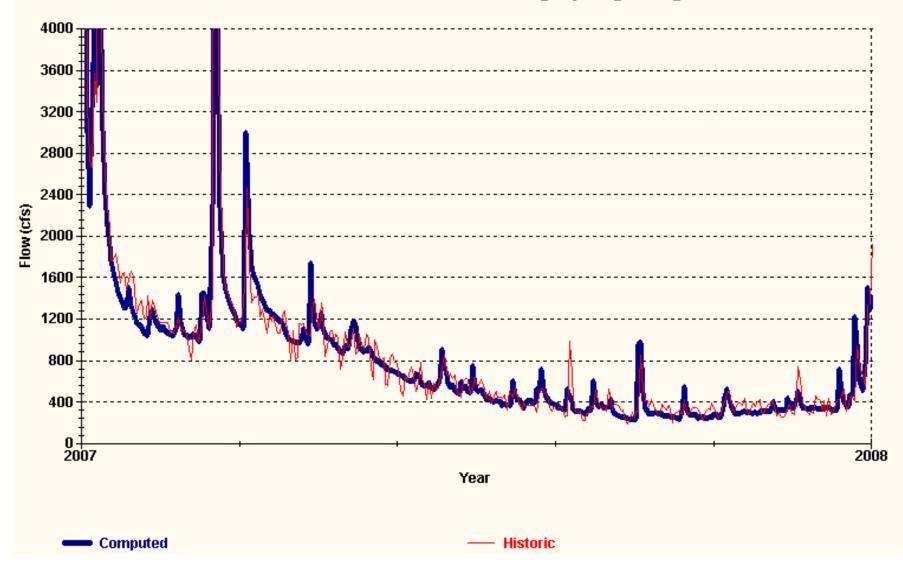
Data Sources

- Municipal & Industrial Withdrawals
 - DWR
 - Water Users
- Wastewater Discharges (NPDES)
 - DWQ
 - Dischargers
- Agricultural Water Use
 - National Agricultural Statistics Service
 - Ag Statistics from NC Dept. of Agriculture (NCDA)
 - Ag Extension Agents and Questionnaire


Municipal & Industrial Data Analysis

- Withdrawals & Discharges
 - 1930s to 2008
 - Monthly Time Series
- Fill Gaps in Series
 - Linear Interpolation Census Data
 - User Records of Facility Start/Stop Dates

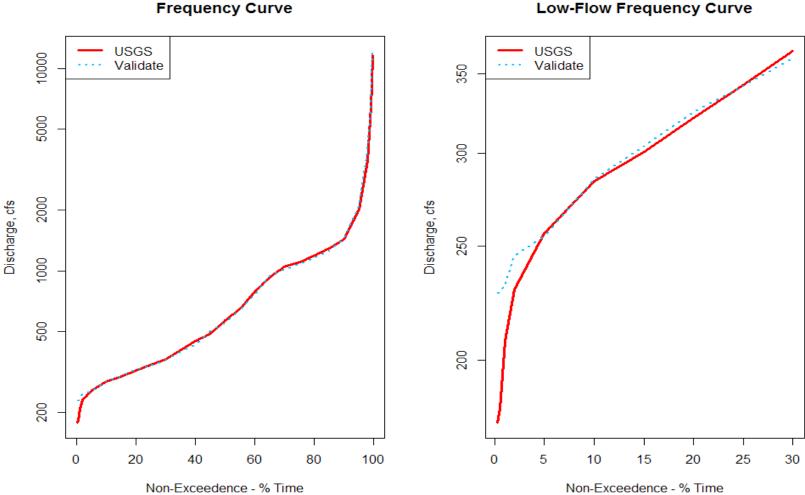
Water use data is used to create unimpaired streamflows. Monthly Impairments at Boiling Springs (2008)



Validation of Broad River Basin Hydrologic Model

Assumptions:

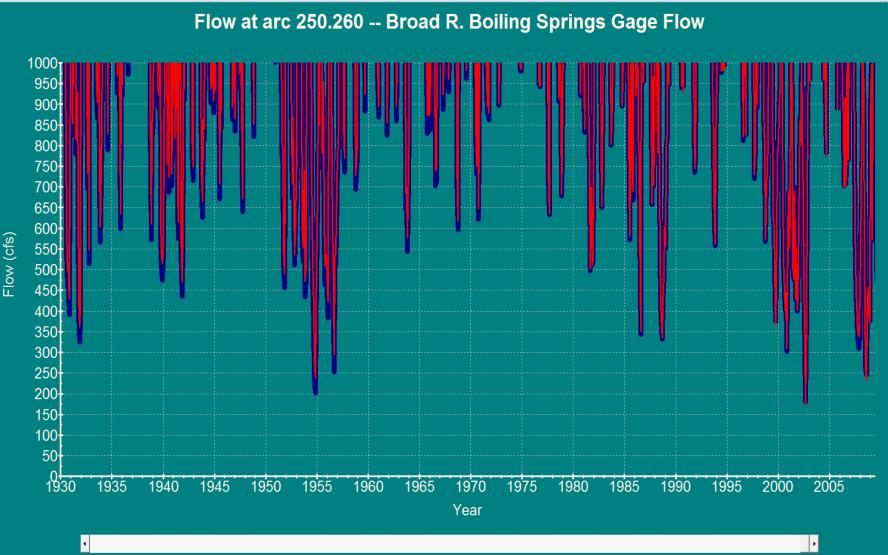
- Demand 2007 historic monthly or daily values as available
- o Discharge 2007
 - Historic monthly pattern [using actual monthly average discharge / demand ratios] for dependent discharge nodes
 - $\circ~$ Historic daily discharge for independent discharge nodes
- Beginning of 2007 reservoir levels (or year levels)
- Drought operation of the systems
- No historic agricultural demand used as calculated by the model
- No historic evaporation from reservoir used as calculated by the model



Flow at arc 250.260 -- Broad R. Boiling Springs Gage Flow

Broad River near Boiling Springs Arc250.260 2007 Validation Scenario

Low-Flow Frequency Curve


Managing Water Resources to Support North Carolina's Future

Boiling Springs Monthly Gage Flow

_ 8 >

Plot Window - [C:\Broad_OASIS\plots\Simulation\BoilingSprings_flow_comp_month

Eile Edit Window Info

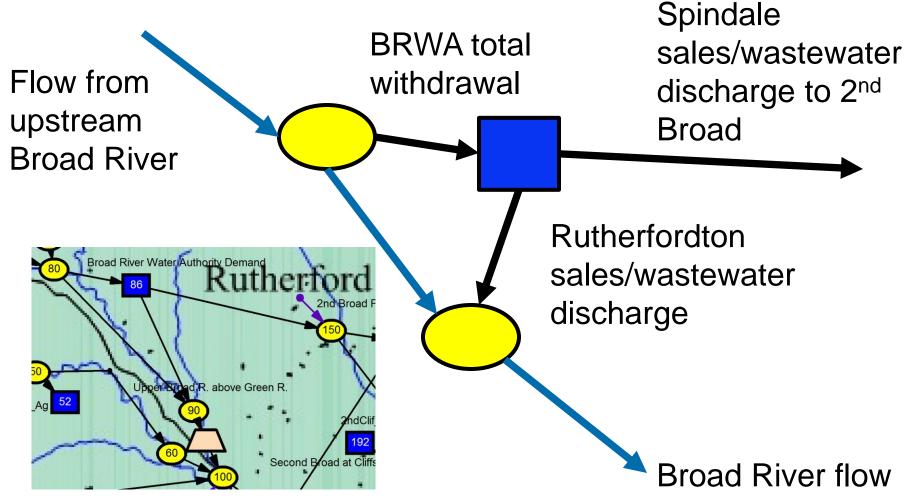
— Historic

Using the Broad River Basin Model

<u>File Edit Run O</u> utput <u>t</u> elp Schematic Setup Time Node Arc	Broad River Basin Hydrologic Model		
Year Month D Start of Run 1930 01 0 End of Run 2009 09 3 Initial Reservoir Levels Initial Reservoir Levels 10 Node Number Node Name Start 10 Lake Summit (Tuxedo Da 20 40 Lake Adger (Turner Shoa 9 70 Lake Lure 9 95 Upper Broad Routing 11 220 Cliffside Steam Plant Darr 6 440 Stice Shoals Dam 6 525 Lower Broad Routing 11 550 Gaston Shoals Dam 6	No Forecasts Conditional Forecasts Non-conditional Forecasts	OCL Command Files Select files to view or edit, then hit ENTER _SafeYield_Constants.ocl Agric_Allocation.ocl Agric_Calculation.ocl constants.ocl drought_plans.ocl Forecast-Trigger_Parms.ocl inflows.ocl main.ocl return_flows.ocl routing.ocl udef_list.ocl	Edit Agricultural Data Edit Notes RUN Run Safe Yield Analysis View Output Tables Plots Balance Sheet Quick View

Major Systems Current Demands & Future Demands Projections

Utility	2010 Average Annual Demand (MGD)	2060 Average Annual Demand (MGD)
BRWA	5.7	3.9*
Polk Co.	2.5	3.5
Forest City	1.8	2.6
Cliffside Steam (Net WD)	11.4	20.7
Cleveland Co.	4.2	7.9**
Shelby	3.8	5.4
Kings Mtn.	2.4	2.0
Gaffney (SC)	8.3	14.6



Current & Future Projections of Wastewater Returns

Utility	2010 Average Annual Return (MGD)	2060 Average Annual Return (MGD)
Lake Lure	0.07	0.2
Rutherfordton	0.5	0.9
Spindale	1.2	1.5
Saluda	0.05	0.2
Columbus	0.3	0.5
Boiling Springs	0.3	0.5
PPG Industries	0.7	2.9
Grover	0.05	0.2

Broad River Water Authority (BRWA) Simplified

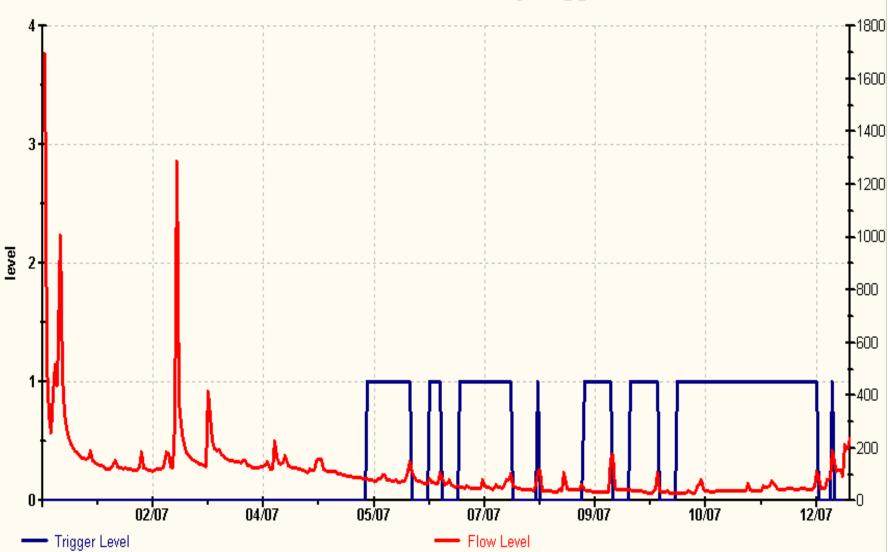
Broad River Water Authority

- Primary source Broad River
- Sells water to Spindale, Rutherfordton
 - Wastewater treated in these towns
- Annual Average Demand = 5.17 MGD
 - Assume 2.5 is for Polk county in current scenario
- Treatment capacity = 8 MGD
- Drought Plan
 - Stage 1 Flow at Intake < 65 MGD for 7 days
 - Voluntary 5% reduction
 - Stage 2 Flow at Intake < 20 MGD for 7 days
 - Mandatory I Shortage 10% reduction
 - Stage 3 Flow at Intake < 18 MGD for 7 days
 - Mandatory II Emergency 20% reduction
 - Stage 4 Flow at Intake < 15 MGD for 7 days
 - Mandatory III Crisis 25% reduction

BRWA Demand Pattern

450

360


Change Node

Import Data

OK.

Cancel

Broad River Water Authority Triggers

Next Steps

- 60 Day Comment Period (7/2/12 8/30/12)
 - Model Training 1 or 2 days based on requests
 Potential dates 7/17, 7/19, 7/24, 7/26
- WAC Concurrence September
- EMC Approval November
- Use the model to assist in the management of the Broad River Basin water resources.

Questions?

• Broad Model Website -

http://www.ncwater.org/Data and Modeling/Broad/

• Broad Model Report -

http://www.ncwater.org/Data and Modeling/Broad/background/03 BRBM Modeling the Broad River Basin Operations with OASIS.pdf

 Model Training Signup -<u>http://www.ncwater.org/Data_and_Modeling/Broad/training.php</u>

Contact Information

Tom Fransen, Deputy Director Tom.Fransen@ncdenr.gov 919-707-9015

